CVAT项目SDK扩展:如何添加自定义API方法
前言
在使用计算机视觉标注工具CVAT时,开发者经常需要扩展其SDK功能以满足特定业务需求。本文将详细介绍如何在CVAT SDK中添加自定义API方法,实现与后端新增接口的交互。
问题背景
CVAT提供了完善的Python SDK用于与后端服务交互,但当我们需要调用自定义的后端接口时,默认的SDK可能无法满足需求。例如,当后端新增了一个用于更新项目的特定接口时,我们需要在SDK中添加对应的方法。
解决方案
1. 修改SDK源码
首先需要在CVAT SDK的core/proxies/project.py文件中添加新的方法。主要涉及两个类的修改:
ProjectsRepo类:添加一个用于检索项目并调用更新方法的新方法
def update_project_visionia(self, id: int):
project = self.retrieve(id)
return project.update_project_visionia()
Project类:添加实际执行API调用的方法
def update_project_visionia(self):
(_, response) = self._client.api_client.put(
f"/api/visionia/{self.id}/update-project/"
)
self.fetch() # 刷新项目数据
return response
2. 安装修改后的SDK
由于Python默认会使用已安装的包,我们需要先卸载原有的SDK,然后以开发模式安装修改后的版本:
pip uninstall cvat-sdk
cd /cvat/cvat-sdk
pip install -e .
这种开发模式安装会创建一个指向本地源码的链接,使得修改能够立即生效。
技术细节
后端接口设计
后端通常需要提供RESTful风格的接口,例如:
@action(detail=True, methods=['PUT'], url_path='update-project')
def update_project_visionia(self, request, pk=None):
# 实现具体的业务逻辑
pass
对应的URL配置:
path('api/visionia/<int:pk>/update-project/',
VisioniaViewSet.as_view({'put': 'update_project_visionia'}),
name='project_update'),
客户端调用
在客户端代码中,可以这样使用新添加的方法:
def update_project_visionia(self):
try:
with make_client(self.host, port=self.port,
credentials=(self.username, self.password)) as client:
project = client.projects.retrieve(self.id)
return project.update_project_visionia()
except exceptions.ApiException as e:
print(f'Exception on API call for update_project_visionia: {e}')
raise
注意事项
-
版本控制:修改SDK源码后,应当做好版本标记,避免与其他开发者或部署环境产生冲突。
-
错误处理:自定义方法应当包含完善的错误处理机制,特别是网络请求和响应解析部分。
-
文档更新:添加新方法后,应当同步更新项目文档,方便团队其他成员使用。
-
测试验证:新方法应当编写单元测试和集成测试,确保功能正常。
总结
通过本文介绍的方法,开发者可以灵活扩展CVAT SDK的功能,满足特定的业务需求。关键在于理解SDK的结构和工作原理,以及如何正确安装修改后的版本。这种扩展方式不仅适用于项目更新操作,也可以应用于其他各种自定义API接口的调用场景。
对于需要长期维护的项目,建议考虑将这些自定义方法封装为独立的扩展模块,而不是直接修改SDK源码,这样可以更方便地进行版本管理和升级。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00