CVAT项目SDK扩展:如何添加自定义API方法
前言
在使用计算机视觉标注工具CVAT时,开发者经常需要扩展其SDK功能以满足特定业务需求。本文将详细介绍如何在CVAT SDK中添加自定义API方法,实现与后端新增接口的交互。
问题背景
CVAT提供了完善的Python SDK用于与后端服务交互,但当我们需要调用自定义的后端接口时,默认的SDK可能无法满足需求。例如,当后端新增了一个用于更新项目的特定接口时,我们需要在SDK中添加对应的方法。
解决方案
1. 修改SDK源码
首先需要在CVAT SDK的core/proxies/project.py文件中添加新的方法。主要涉及两个类的修改:
ProjectsRepo类:添加一个用于检索项目并调用更新方法的新方法
def update_project_visionia(self, id: int):
project = self.retrieve(id)
return project.update_project_visionia()
Project类:添加实际执行API调用的方法
def update_project_visionia(self):
(_, response) = self._client.api_client.put(
f"/api/visionia/{self.id}/update-project/"
)
self.fetch() # 刷新项目数据
return response
2. 安装修改后的SDK
由于Python默认会使用已安装的包,我们需要先卸载原有的SDK,然后以开发模式安装修改后的版本:
pip uninstall cvat-sdk
cd /cvat/cvat-sdk
pip install -e .
这种开发模式安装会创建一个指向本地源码的链接,使得修改能够立即生效。
技术细节
后端接口设计
后端通常需要提供RESTful风格的接口,例如:
@action(detail=True, methods=['PUT'], url_path='update-project')
def update_project_visionia(self, request, pk=None):
# 实现具体的业务逻辑
pass
对应的URL配置:
path('api/visionia/<int:pk>/update-project/',
VisioniaViewSet.as_view({'put': 'update_project_visionia'}),
name='project_update'),
客户端调用
在客户端代码中,可以这样使用新添加的方法:
def update_project_visionia(self):
try:
with make_client(self.host, port=self.port,
credentials=(self.username, self.password)) as client:
project = client.projects.retrieve(self.id)
return project.update_project_visionia()
except exceptions.ApiException as e:
print(f'Exception on API call for update_project_visionia: {e}')
raise
注意事项
-
版本控制:修改SDK源码后,应当做好版本标记,避免与其他开发者或部署环境产生冲突。
-
错误处理:自定义方法应当包含完善的错误处理机制,特别是网络请求和响应解析部分。
-
文档更新:添加新方法后,应当同步更新项目文档,方便团队其他成员使用。
-
测试验证:新方法应当编写单元测试和集成测试,确保功能正常。
总结
通过本文介绍的方法,开发者可以灵活扩展CVAT SDK的功能,满足特定的业务需求。关键在于理解SDK的结构和工作原理,以及如何正确安装修改后的版本。这种扩展方式不仅适用于项目更新操作,也可以应用于其他各种自定义API接口的调用场景。
对于需要长期维护的项目,建议考虑将这些自定义方法封装为独立的扩展模块,而不是直接修改SDK源码,这样可以更方便地进行版本管理和升级。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00