Bitnami Kube-Prometheus 支持 Prometheus 3 的命名验证方案配置
随着 Prometheus 3 的发布,其引入了对标签和指标名称的 UTF-8 支持,这为监控系统带来了更灵活的命名能力。然而,在实际生产环境中,当我们需要将 Prometheus 与其他监控工具(如 Mimir)配合使用时,可能会遇到兼容性问题。本文将深入探讨如何在 Bitnami Kube-Prometheus Chart 中配置 nameValidationScheme 参数来实现兼容性。
Prometheus 3 的命名验证变化
Prometheus 3 的一个重要变化是放宽了对指标名称和标签的命名限制,现在支持完整的 UTF-8 字符集。这一变化虽然增加了命名的灵活性,但也带来了向后兼容性的挑战。特别是当与一些尚未完全支持 UTF-8 命名规范的监控系统(如 Mimir)集成时,可能会导致数据无法正确处理。
Prometheus 提供了两种命名验证方案:
- UTF-8 模式:完全支持 UTF-8 字符集(Prometheus 3 默认)
- 传统模式:保持与 Prometheus 2.x 相同的命名验证规则
Bitnami Kube-Prometheus 的配置现状
Bitnami Kube-Prometheus Chart 当前版本(11.1.7)尚未直接暴露 nameValidationScheme 参数的配置选项。这个参数由 Prometheus Operator 提供,允许用户在 Prometheus 自定义资源中指定命名验证方案。
在底层,Prometheus Operator 通过 Prometheus 自定义资源定义(CRD)支持这一配置,但 Bitnami Chart 的模板文件尚未将此参数暴露给用户进行配置。
解决方案实现
要解决这个问题,我们需要在 Bitnami Kube-Prometheus Chart 中增加对 nameValidationScheme 参数的支持。具体实现包括:
- 在 values.yaml 中添加配置选项:
prometheus:
nameValidationScheme: "Legacy"
- 修改 prometheus.yaml 模板文件,将配置传递给 Prometheus 自定义资源:
spec:
{{- if .Values.prometheus.nameValidationScheme }}
nameValidationScheme: {{ .Values.prometheus.nameValidationScheme | quote }}
{{- end }}
实际应用场景
在实际应用中,当出现以下情况时,建议将 nameValidationScheme 设置为 "Legacy":
- 与尚未完全支持 UTF-8 命名规范的监控系统集成
- 需要保持与 Prometheus 2.x 版本的完全兼容
- 使用某些对指标名称有特殊要求的告警规则或仪表盘
未来展望
随着监控生态系统的不断发展,预计主流监控工具都将逐步实现对 UTF-8 命名的完整支持。例如,Mimir 项目已经在路线图中规划了对 UTF-8 标签和指标的支持。届时,用户可以更自由地选择命名验证方案,而无需担心兼容性问题。
总结
通过扩展 Bitnami Kube-Prometheus Chart 以支持 nameValidationScheme 参数,用户可以更灵活地配置 Prometheus 的命名验证行为,确保与现有监控生态系统的兼容性。这一改进特别适合那些需要同时使用 Prometheus 和其他监控工具的企业环境,为平滑过渡到 Prometheus 3 提供了便利。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00