Vectorscan:跨平台高性能正则表达式匹配库
项目介绍
Vectorscan 是一个基于 Intel Hyperscan 的高性能多正则表达式匹配库的分支项目。它旨在支持更多平台,目前已经在 ARM NEON/ASIMD 和 Power VSX 上实现了 100% 的功能性支持。此外,Vectorscan 还提供了 ARM SVE2 支持,并且正在积极开发中。为了进一步扩展其兼容性,Vectorscan 从 5.4.12 版本开始引入了 SIMDe 端口,使得在没有官方 SIMD 支持的平台上也能运行,或者作为现有架构的替代后端,用于参考和比较目的。
Vectorscan 遵循 Intel Hyperscan 的 API 和内部算法,但在必要时会进行代码优化和简化,以提高性能和可移植性。项目的目标是逐步消除架构特定的 #ifdef 代码,并将其抽象化。
项目技术分析
Vectorscan 的核心技术基于混合自动机技术,能够同时匹配大量(最多数万个)正则表达式,并支持在数据流中进行正则表达式匹配。它遵循 libpcre 库的正则表达式语法,但作为一个独立的库,拥有自己的 C API。
Vectorscan 的技术优势在于其跨平台支持和性能优化。通过引入 SIMDe 端口,Vectorscan 能够在没有 SIMD 支持的平台上运行,同时保持高性能。此外,Vectorscan 还支持多种 CPU 架构的特定优化选项,如 AVX2、AVX512、SVE 和 SVE2 等,以最大化性能。
项目及技术应用场景
Vectorscan 主要应用于深度包检测(DPI)库栈中,类似于 Hyperscan。它适用于需要高性能正则表达式匹配的场景,如网络安全、数据过滤和内容分析等。由于其跨平台特性,Vectorscan 可以在多种硬件平台上运行,包括但不限于 ARM、Power 和 x86 架构。
项目特点
- 跨平台支持:Vectorscan 不仅支持 Intel 架构,还扩展了对 ARM 和 Power 架构的支持,未来还将支持更多平台。
- 高性能:通过混合自动机技术和 SIMD 优化,Vectorscan 能够实现高性能的正则表达式匹配。
- 开源与社区驱动:Vectorscan 是一个开源项目,遵循 BSD 许可证,社区可以自由参与和贡献。
- 兼容性与扩展性:Vectorscan 保持与 Hyperscan 5.4 的 ABI 和 API 兼容性,同时允许用户请求的 API 扩展和改进。
- 易于集成:Vectorscan 提供了详细的安装和构建指南,支持多种操作系统和包管理器,方便用户集成到现有项目中。
结语
Vectorscan 是一个强大的、跨平台的正则表达式匹配库,适用于各种高性能计算场景。无论你是网络安全专家、数据科学家,还是系统开发者,Vectorscan 都能为你提供高效、可靠的正则表达式匹配解决方案。立即访问 Vectorscan GitHub 仓库,开始你的高性能计算之旅吧!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00