Vectorscan:跨平台高性能正则表达式匹配库
项目介绍
Vectorscan 是一个基于 Intel Hyperscan 的高性能多正则表达式匹配库的分支项目。它旨在支持更多平台,目前已经在 ARM NEON/ASIMD 和 Power VSX 上实现了 100% 的功能性支持。此外,Vectorscan 还提供了 ARM SVE2 支持,并且正在积极开发中。为了进一步扩展其兼容性,Vectorscan 从 5.4.12 版本开始引入了 SIMDe 端口,使得在没有官方 SIMD 支持的平台上也能运行,或者作为现有架构的替代后端,用于参考和比较目的。
Vectorscan 遵循 Intel Hyperscan 的 API 和内部算法,但在必要时会进行代码优化和简化,以提高性能和可移植性。项目的目标是逐步消除架构特定的 #ifdef 代码,并将其抽象化。
项目技术分析
Vectorscan 的核心技术基于混合自动机技术,能够同时匹配大量(最多数万个)正则表达式,并支持在数据流中进行正则表达式匹配。它遵循 libpcre 库的正则表达式语法,但作为一个独立的库,拥有自己的 C API。
Vectorscan 的技术优势在于其跨平台支持和性能优化。通过引入 SIMDe 端口,Vectorscan 能够在没有 SIMD 支持的平台上运行,同时保持高性能。此外,Vectorscan 还支持多种 CPU 架构的特定优化选项,如 AVX2、AVX512、SVE 和 SVE2 等,以最大化性能。
项目及技术应用场景
Vectorscan 主要应用于深度包检测(DPI)库栈中,类似于 Hyperscan。它适用于需要高性能正则表达式匹配的场景,如网络安全、数据过滤和内容分析等。由于其跨平台特性,Vectorscan 可以在多种硬件平台上运行,包括但不限于 ARM、Power 和 x86 架构。
项目特点
- 跨平台支持:Vectorscan 不仅支持 Intel 架构,还扩展了对 ARM 和 Power 架构的支持,未来还将支持更多平台。
- 高性能:通过混合自动机技术和 SIMD 优化,Vectorscan 能够实现高性能的正则表达式匹配。
- 开源与社区驱动:Vectorscan 是一个开源项目,遵循 BSD 许可证,社区可以自由参与和贡献。
- 兼容性与扩展性:Vectorscan 保持与 Hyperscan 5.4 的 ABI 和 API 兼容性,同时允许用户请求的 API 扩展和改进。
- 易于集成:Vectorscan 提供了详细的安装和构建指南,支持多种操作系统和包管理器,方便用户集成到现有项目中。
结语
Vectorscan 是一个强大的、跨平台的正则表达式匹配库,适用于各种高性能计算场景。无论你是网络安全专家、数据科学家,还是系统开发者,Vectorscan 都能为你提供高效、可靠的正则表达式匹配解决方案。立即访问 Vectorscan GitHub 仓库,开始你的高性能计算之旅吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00