Vectorscan:跨平台高性能正则表达式匹配库
项目介绍
Vectorscan 是一个基于 Intel Hyperscan 的高性能多正则表达式匹配库的分支项目。它旨在支持更多平台,目前已经在 ARM NEON/ASIMD 和 Power VSX 上实现了 100% 的功能性支持。此外,Vectorscan 还提供了 ARM SVE2 支持,并且正在积极开发中。为了进一步扩展其兼容性,Vectorscan 从 5.4.12 版本开始引入了 SIMDe 端口,使得在没有官方 SIMD 支持的平台上也能运行,或者作为现有架构的替代后端,用于参考和比较目的。
Vectorscan 遵循 Intel Hyperscan 的 API 和内部算法,但在必要时会进行代码优化和简化,以提高性能和可移植性。项目的目标是逐步消除架构特定的 #ifdef 代码,并将其抽象化。
项目技术分析
Vectorscan 的核心技术基于混合自动机技术,能够同时匹配大量(最多数万个)正则表达式,并支持在数据流中进行正则表达式匹配。它遵循 libpcre 库的正则表达式语法,但作为一个独立的库,拥有自己的 C API。
Vectorscan 的技术优势在于其跨平台支持和性能优化。通过引入 SIMDe 端口,Vectorscan 能够在没有 SIMD 支持的平台上运行,同时保持高性能。此外,Vectorscan 还支持多种 CPU 架构的特定优化选项,如 AVX2、AVX512、SVE 和 SVE2 等,以最大化性能。
项目及技术应用场景
Vectorscan 主要应用于深度包检测(DPI)库栈中,类似于 Hyperscan。它适用于需要高性能正则表达式匹配的场景,如网络安全、数据过滤和内容分析等。由于其跨平台特性,Vectorscan 可以在多种硬件平台上运行,包括但不限于 ARM、Power 和 x86 架构。
项目特点
- 跨平台支持:Vectorscan 不仅支持 Intel 架构,还扩展了对 ARM 和 Power 架构的支持,未来还将支持更多平台。
- 高性能:通过混合自动机技术和 SIMD 优化,Vectorscan 能够实现高性能的正则表达式匹配。
- 开源与社区驱动:Vectorscan 是一个开源项目,遵循 BSD 许可证,社区可以自由参与和贡献。
- 兼容性与扩展性:Vectorscan 保持与 Hyperscan 5.4 的 ABI 和 API 兼容性,同时允许用户请求的 API 扩展和改进。
- 易于集成:Vectorscan 提供了详细的安装和构建指南,支持多种操作系统和包管理器,方便用户集成到现有项目中。
结语
Vectorscan 是一个强大的、跨平台的正则表达式匹配库,适用于各种高性能计算场景。无论你是网络安全专家、数据科学家,还是系统开发者,Vectorscan 都能为你提供高效、可靠的正则表达式匹配解决方案。立即访问 Vectorscan GitHub 仓库,开始你的高性能计算之旅吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00