Spring Cloud Gateway中AdaptCachedBodyGlobalFilter缓存请求体的正确使用方式
背景介绍
Spring Cloud Gateway作为微服务架构中的API网关,提供了强大的路由转发和过滤器功能。其中,AdaptCachedBodyGlobalFilter是一个用于缓存请求体的全局过滤器,在处理POST请求时特别有用。然而,许多开发者在实际使用过程中会遇到缓存不生效的问题。
问题现象
开发者在配置AdaptCachedBodyGlobalFilter时,按照常规思路通过发布EnableBodyCachingEvent事件来启用特定路由的请求体缓存功能,但发现过滤器并未按预期工作。经过调试发现,只有当在路由ID前添加"ReactiveCompositeDiscoveryClient_"前缀时,缓存功能才能正常生效。
原因分析
深入分析AdaptCachedBodyGlobalFilter的源码实现,我们可以发现关键点:
- 过滤器会从exchange中获取GATEWAY_ROUTE_ATTR属性,这个属性的ID格式为"ReactiveCompositeDiscoveryClient_"+原始路由ID
- 过滤器内部维护了一个routesToCache的Map结构,用于存储需要缓存请求体的路由配置
- 当检查路由是否需要缓存时,使用的是经过处理后的完整路由ID
这种设计是因为Spring Cloud Gateway在内部处理服务发现时,会自动为路由ID添加前缀以区分不同的路由来源。对于通过服务发现机制(lb://)配置的路由,网关会自动添加"ReactiveCompositeDiscoveryClient_"前缀。
解决方案
基于上述分析,正确的使用方式有以下几种:
方案一:手动添加前缀
在发布EnableBodyCachingEvent事件时,手动为路由ID添加前缀:
@PostConstruct
public void init() {
gatewayProperties.getRoutes().forEach(routeDefinition -> {
String routeId = "ReactiveCompositeDiscoveryClient_" + routeDefinition.getId();
EnableBodyCachingEvent event = new EnableBodyCachingEvent(this, routeId);
publisher.publishEvent(event);
});
}
方案二:使用RouteLocator获取完整路由ID
通过RouteLocator获取实际生效的路由信息,确保使用正确的路由ID:
@Autowired
private RouteLocator routeLocator;
@PostConstruct
public void init() {
routeLocator.getRoutes()
.subscribe(route -> {
EnableBodyCachingEvent event = new EnableBodyCachingEvent(this, route.getId());
publisher.publishEvent(event);
});
}
方案三:配置全局缓存
如果需要为所有路由启用请求体缓存,可以直接配置:
@Bean
public AdaptCachedBodyGlobalFilter adaptCachedBodyGlobalFilter() {
return new AdaptCachedBodyGlobalFilter(true);
}
最佳实践建议
- 对于服务发现类型的路由(lb://),建议使用方案二获取完整路由ID
- 如果确定所有路由都需要缓存请求体,使用方案三最为简单直接
- 在调试时,可以通过打印exchange中的GATEWAY_ROUTE_ATTR属性来确认实际路由ID格式
- 注意缓存请求体会增加内存消耗,应根据实际业务需求合理配置
总结
Spring Cloud Gateway的AdaptCachedBodyGlobalFilter是一个强大的请求体缓存工具,但使用时需要注意内部路由ID的处理机制。理解网关内部的路由处理流程,可以帮助开发者更准确地配置和使用各种过滤器功能。通过本文的分析和解决方案,开发者可以避免常见的配置陷阱,充分发挥网关的性能优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00