开源项目安装与配置指南:Weightgain
2025-04-17 12:55:07作者:邵娇湘
1. 项目基础介绍
Weightgain 是一个开源项目,旨在帮助开发者快速微调任何嵌入模型,即使是闭源模型如 OpenAI、Cohere、Voyage 等。它通过训练一个适配器(adapter)来实现,该适配器位于模型之上,在生成的嵌入之后进行转换,从而产生针对特定任务优化的嵌入,适用于特定的 RAG/检索用例。
该项目主要使用 Python 编程语言。
2. 关键技术和框架
- 嵌入模型:Weightgain 支持多种嵌入模型,这些模型由 LiteLLM 支持。
- 适配器训练:通过训练一个简单的线性层(或未来可能的 MLP)适配器,来调整模型输出的嵌入。
- 数据集构建:支持从合成数据或用户提供的数据生成数据集。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统中已安装以下环境和依赖项:
- Python 3.7 或更高版本
- pip(Python 包管理器)
确保您的 Python 环境已正确设置,并且您有权限安装新的 Python 包。
详细安装步骤
-
安装项目依赖
打开命令行工具(如 Terminal 或 Command Prompt),然后运行以下命令来安装 Weightgain:
pip install weightgain -
创建数据集
根据您的需求,生成或提供数据集。以下是从合成数据生成数据集的示例代码:
from weightgain import Dataset # 使用提示生成代码块 dataset = Dataset.from_synthetic_chunks( prompt="代码片段示例。", llm="openai/gpt-4o-mini", n_chunks=25, n_queries_per_chunk=1 )如果您已经有了代码块和查询,您可以使用以下代码:
qa_pairs = [...] # 列表形式,包含 (str, str) 元组 dataset = Dataset.from_pairs(qa_pairs, model="openai/gpt-4o-mini") -
训练适配器
接下来,使用数据集来训练适配器:
from weightgain import Adapter adapter = Adapter.fit( dataset, batch_size=25, max_epochs=50, learning_rate=100.0, dropout=0.0 ) -
应用适配器
训练完成后,您可以将适配器应用于旧的嵌入,以获得新的优化嵌入:
old_embeddings = [...] # 嵌入向量列表 new_embeddings = adapter.transform(old_embeddings) -
查看报告
最后,您可以通过以下代码生成训练报告:
adapter.show_report()
以上步骤即为 Weightgain 项目的详细安装和配置指南。遵循这些步骤,您应该能够成功安装和运行该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
IINA插件生态系统:探索丰富的第三方扩展资源conda包版本冲突解决:高级调试技巧如何轻松提取MSI安装包?免费开源工具lessmsi的终极使用指南如何为开源本地AI平台gallery44提供可持续赞助与支持:完整指南15个终极Adobe Illustrator脚本:设计师必备的效率提升神器终极指南:如何用 SonarQube Community Branch Plugin 解锁免费分支分析功能GitHub_Trending/ha/hacker-scripts与人工智能伦理:自动化决策的责任归属2025最强AI论文追踪指南:从每周精选到永久收藏的全流程攻略OpenGrok迁移指南:从其他代码搜索工具平滑过渡的完整教程三步掌握 LrcHelper:网易云歌词下载神器完全指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246