Nevergrad中如何设置参数步长进行离散化优化
2025-06-16 21:47:25作者:温玫谨Lighthearted
在使用Nevergrad进行超参数优化时,我们经常需要处理连续参数空间。但有时业务需求要求参数只能取某些特定的离散值,比如以0.1为步长从0到1的取值。本文将详细介绍如何在Nevergrad中实现这种离散化参数设置。
问题背景
在机器学习超参数调优过程中,某些参数可能需要限制为特定的离散值。例如,一个学习率参数可能只需要在0.0、0.1、0.2...1.0这些离散值中进行选择,而不是任意的连续值。
Nevergrad默认提供的ng.p.Scalar参数类型会生成连续的浮点数值,这不符合我们的离散化需求。
解决方案
Nevergrad提供了一种巧妙的方法来实现离散化参数设置,核心思路是:
- 首先定义一个整数类型的参数空间
- 然后通过简单的数学变换将其映射到所需的离散值
具体实现代码如下:
import nevergrad as ng
# 定义0到10的整数参数
discrete_param = ng.p.Scalar(lower=0., upper=10.).set_integer_casting()
# 使用时除以10得到0.0,0.1...1.0的离散值
param_value = discrete_param.value / 10.0
实现原理
这种方法的巧妙之处在于:
set_integer_casting()方法将浮点数参数转换为整数空间,确保只生成整数值- 通过将上限设为10,我们实际上创建了11个可能的整数值(0-10)
- 除以10的简单操作将这些整数映射到我们需要的0.0到1.0的离散值
实际应用示例
下面是一个完整的示例,展示如何在实际优化问题中使用这种离散参数:
import nevergrad as ng
# 定义优化器
optimizer = ng.optimizers.NGOpt(parametrization=2, budget=100)
# 定义参数空间
param1 = ng.p.Scalar(lower=0., upper=10.).set_integer_casting()
param2 = ng.p.Scalar(lower=0., upper=20.).set_integer_casting()
# 设置参数化
optimizer.parametrization.register_parameter("p1", param1)
optimizer.parametrization.register_parameter("p2", param2)
# 定义目标函数
def objective(x):
# 将参数转换为实际需要的离散值
p1 = x.value[0] / 10.0 # 0.0, 0.1, ..., 1.0
p2 = x.value[1] / 20.0 # 0.0, 0.05, ..., 1.0
return compute_loss(p1, p2)
# 运行优化
recommendation = optimizer.minimize(objective)
注意事项
- 这种方法适用于均匀分布的离散值,如果需要非均匀的离散值,可以考虑使用
Choice参数类型 - 整数转换会略微影响优化器的性能,因为参数空间变得不连续
- 对于大范围的离散值,建议使用对数尺度或其他变换来改善优化效率
通过这种简单而有效的方法,我们可以在Nevergrad中轻松实现参数的离散化设置,满足特定的业务需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146