ModelScope中funasr-pipeline语音活动检测任务报错解决方案
2025-05-29 00:31:34作者:范靓好Udolf
问题背景
在使用ModelScope的funasr-pipeline进行语音活动检测(VAD)任务时,开发者可能会遇到"funasr-pipeline is not in the pipelines registry group voice-activity-detection"的错误提示。这个错误通常是由于ModelScope库版本与FunASR组件版本不兼容导致的。
原因分析
该错误的核心原因是ModelScope库与FunASR组件之间的版本匹配问题。ModelScope作为一个模型推理框架,需要与特定的FunASR版本配合使用才能正确加载语音活动检测模型。
解决方案
方案一:使用较旧版本组合
推荐使用以下版本组合:
- ModelScope 1.10.0
- FunASR 0.8.7或0.8.8
在这种配置下,模型会自动通过pipeline下载,无需手动下载模型文件。但需要注意,如果开发者通过git clone手动下载了模型文件,反而可能导致运行错误。
方案二:使用最新版本组合(推荐)
推荐使用以下版本组合:
- ModelScope 1.11.1
- FunASR 1.0.3
在这种配置下,需要先通过git clone手动下载相关模型文件,包括:
- 语音识别模型
- 语音活动检测模型
- 标点恢复模型
或者可以直接在pipeline中指定模型路径和相关版本号,让框架自动处理模型加载。
使用示例
以下是使用pipeline进行语音识别的完整示例代码:
inference_pipeline = pipeline(
task=Tasks.auto_speech_recognition,
model='iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch',
model_revision="v2.0.4",
vad_model='iic/speech_fsmn_vad_zh-cn-16k-common-pytorch',
vad_model_revision="v2.0.4",
punc_model='iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch',
punc_model_revision="v2.0.4"
)
rec_result = inference_pipeline(input='音频文件路径.wav')
print(rec_result[0])
注意事项
- 确保使用正确的输入参数格式,新版中'audio_in'参数已改为'input'
- 处理结果需要取索引[0]获取主要识别结果
- 对于中文场景,建议使用专门优化的中文标点恢复模型
- 如果问题仍然存在,建议查看项目的最新文档或提交issue获取支持
总结
ModelScope与FunASR的版本兼容性问题可以通过选择合适的版本组合来解决。开发者应根据自己的需求选择稳定版本或最新版本方案,并注意对应的模型加载方式差异。正确的版本匹配和模型加载方式是保证语音活动检测任务正常运行的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134