D2L项目解析:序列感知推荐系统Caser模型详解
2025-06-04 13:17:48作者:劳婵绚Shirley
引言:从静态推荐到序列感知
在传统的推荐系统研究中,我们通常将用户-物品交互建模为一个静态的矩阵补全问题。然而,这种方法忽略了用户行为中蕴含的时间序列特性。现实场景中,用户的偏好会随时间演变,最近的交互行为往往更能反映当前兴趣。本文将深入解析D2L项目中介绍的序列感知推荐系统模型Caser(Convolutional Sequence Embedding Recommendation Model),这是一种利用卷积神经网络捕捉用户动态行为模式的创新方法。
序列感知推荐的核心思想
序列感知推荐系统与传统推荐系统的本质区别在于,它显式地考虑了用户交互行为的时间顺序。这种系统能够:
- 捕捉用户的短期兴趣漂移
- 识别物品间的序列模式(如购买A后常购买B)
- 结合用户的长期偏好和短期意图进行综合预测
Caser模型架构解析
输入表示层
Caser模型的输入是用户最近L个交互物品的嵌入矩阵:
其中Q ∈ ℝ^(n×k)是所有物品的嵌入矩阵,q_i表示第i个物品的嵌入向量。这个L×k的矩阵可以看作是一个"用户近期行为图像"。
双通道卷积设计
Caser的创新之处在于同时使用两种卷积网络:
- 水平卷积网络:使用不同高度h(1到L)的滤波器,捕捉不同长度的序列模式
- 垂直卷积网络:使用固定高度L的滤波器,捕捉完整的序列特征
这种设计使得模型能够同时识别:
- 点级模式(单个历史物品对目标的影响)
- 联合级模式(多个历史物品组合对目标的影响)
特征融合与预测
卷积层的输出经过拼接后送入全连接层:
最终预测结合了短期意图z和长期偏好p_u:
技术实现细节
序列数据处理
实现中需要特别注意序列数据的处理方式:
- 对每个用户,按时间顺序排列交互物品
- 使用滑动窗口生成训练样本(窗口大小L+1)
- 每个样本包含:用户ID、前L个物品、第L+1个物品作为目标
- 采用负采样策略生成负例
模型组件
关键组件包括:
- 物品嵌入层(Q)和用户嵌入层(P)
- 垂直卷积层(conv_v)处理完整序列
- 多尺度水平卷积层(conv_h)捕捉不同长度模式
- 最大池化层(max_pool)提取显著特征
- 全连接层(fc)融合特征
实验与调优
在MovieLens 100K数据集上的实验表明:
- 学习率设置对模型收敛至关重要(建议0.04)
- 序列长度L需要权衡(过长增加噪声,过短信息不足)
- 使用BPR损失函数更适合隐式反馈数据
- Dropout(0.05)能有效防止过拟合
模型优势与局限
优势
- 同时建模长短期用户兴趣
- 卷积操作能有效捕捉局部序列模式
- 计算效率高于RNN-based序列模型
局限
- 固定长度序列窗口可能丢失长期依赖
- 对非常稀疏的用户行为序列效果有限
- 超参数(如L、d、d')需要仔细调优
实际应用建议
- 对于电商场景,L可设置为平均会话长度
- 垂直卷积通道数d'可适当减少以降低计算成本
- 考虑结合物品类别信息增强嵌入表示
- 在线服务时可采用最近邻缓存加速预测
扩展思考
- 多行为整合:如何同时考虑点击、购买等不同行为类型的序列?
- 会话感知:如何识别自然会话边界来处理不连续的行为序列?
- 冷启动问题:对于新物品或新用户,如何利用序列信息?
- 可解释性:如何可视化卷积滤波器学习到的序列模式?
通过深入理解Caser模型的设计原理和实现细节,开发者可以更好地将其应用于实际的推荐场景,并根据具体需求进行合理的调整和扩展。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671