Stress-ng NUMA测试在无node0系统上的问题分析与解决
2025-07-05 03:30:17作者:管翌锬
问题背景
在Linux系统性能测试工具stress-ng的使用过程中,我们发现当系统不存在NUMA node 0时,NUMA测试会失败。这是一个典型的硬件配置与软件假设不匹配导致的问题,值得我们深入分析。
问题现象
在特定硬件配置的系统上(NUMA节点编号从4开始,即节点4-7),执行stress-ng的NUMA测试时会出现以下错误:
stress-ng --numa 1 -t 60
stress-ng: fail: [29736] numa: mbind failed, errno=22 (Invalid argument)
错误信息表明mbind系统调用失败,返回EINVAL(无效参数)错误。通过numactl工具检查系统NUMA配置,确认系统确实没有node0,只有node4-7:
available: 4 nodes (4-7)
node 4 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
...
技术分析
NUMA架构基础
NUMA(非统一内存访问)是现代多处理器系统中的一种内存架构设计。在这种架构中,处理器访问本地内存比访问远程内存更快。Linux内核通过NUMA节点来管理这种架构,每个节点有自己的处理器和内存资源。
stress-ng NUMA测试原理
stress-ng的NUMA测试主要通过以下步骤工作:
- 检测系统NUMA节点数量
- 为每个NUMA节点分配内存区域
- 使用mbind系统调用将内存绑定到特定NUMA节点
- 对这些内存区域进行读写操作,测试NUMA性能
问题根源
在原始代码中,stress-ng假设NUMA节点编号从0开始连续分配。当系统配置特殊(如节点编号从4开始)时,代码尝试将内存绑定到不存在的node0,导致mbind调用失败。
解决方案
开发者通过以下方式解决了这个问题:
- 使用NUMA节点位图代替固定节点编号
- 动态检测可用的NUMA节点
- 只对实际存在的NUMA节点进行操作
这种改进使得stress-ng能够适应各种NUMA节点编号配置的系统,提高了工具的兼容性。
验证结果
修复后的stress-ng在相同系统上成功运行NUMA测试:
stress-ng --numa 1 -t 60
stress-ng: info: [53391] numa: system has 4 of a maximum 256 memory NUMA nodes. Using 4.0MB mappings for each instance.
stress-ng: info: [53390] successful run completed in 1 min
技术启示
这个问题给我们以下启示:
- 系统工具开发中不应假设硬件配置的连续性
- 对于NUMA相关操作,应优先使用系统提供的动态检测接口
- 错误处理应考虑各种可能的硬件配置场景
- 系统调用失败时应提供有意义的错误信息
总结
stress-ng对NUMA节点编号的硬编码假设在特殊配置系统上导致测试失败。通过改用动态节点检测和位图管理,工具现在能够正确处理各种NUMA节点编号配置。这个问题展示了系统工具开发中考虑各种硬件配置的重要性,也为其他类似工具的开发提供了参考。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133