Stress-ng NUMA测试在无node0系统上的问题分析与解决
2025-07-05 01:08:20作者:管翌锬
问题背景
在Linux系统性能测试工具stress-ng的使用过程中,我们发现当系统不存在NUMA node 0时,NUMA测试会失败。这是一个典型的硬件配置与软件假设不匹配导致的问题,值得我们深入分析。
问题现象
在特定硬件配置的系统上(NUMA节点编号从4开始,即节点4-7),执行stress-ng的NUMA测试时会出现以下错误:
stress-ng --numa 1 -t 60
stress-ng: fail: [29736] numa: mbind failed, errno=22 (Invalid argument)
错误信息表明mbind系统调用失败,返回EINVAL(无效参数)错误。通过numactl工具检查系统NUMA配置,确认系统确实没有node0,只有node4-7:
available: 4 nodes (4-7)
node 4 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
...
技术分析
NUMA架构基础
NUMA(非统一内存访问)是现代多处理器系统中的一种内存架构设计。在这种架构中,处理器访问本地内存比访问远程内存更快。Linux内核通过NUMA节点来管理这种架构,每个节点有自己的处理器和内存资源。
stress-ng NUMA测试原理
stress-ng的NUMA测试主要通过以下步骤工作:
- 检测系统NUMA节点数量
- 为每个NUMA节点分配内存区域
- 使用mbind系统调用将内存绑定到特定NUMA节点
- 对这些内存区域进行读写操作,测试NUMA性能
问题根源
在原始代码中,stress-ng假设NUMA节点编号从0开始连续分配。当系统配置特殊(如节点编号从4开始)时,代码尝试将内存绑定到不存在的node0,导致mbind调用失败。
解决方案
开发者通过以下方式解决了这个问题:
- 使用NUMA节点位图代替固定节点编号
- 动态检测可用的NUMA节点
- 只对实际存在的NUMA节点进行操作
这种改进使得stress-ng能够适应各种NUMA节点编号配置的系统,提高了工具的兼容性。
验证结果
修复后的stress-ng在相同系统上成功运行NUMA测试:
stress-ng --numa 1 -t 60
stress-ng: info: [53391] numa: system has 4 of a maximum 256 memory NUMA nodes. Using 4.0MB mappings for each instance.
stress-ng: info: [53390] successful run completed in 1 min
技术启示
这个问题给我们以下启示:
- 系统工具开发中不应假设硬件配置的连续性
- 对于NUMA相关操作,应优先使用系统提供的动态检测接口
- 错误处理应考虑各种可能的硬件配置场景
- 系统调用失败时应提供有意义的错误信息
总结
stress-ng对NUMA节点编号的硬编码假设在特殊配置系统上导致测试失败。通过改用动态节点检测和位图管理,工具现在能够正确处理各种NUMA节点编号配置。这个问题展示了系统工具开发中考虑各种硬件配置的重要性,也为其他类似工具的开发提供了参考。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19