快速地图匹配(FMM)开源项目安装与使用指南
2024-09-28 03:21:50作者:伍霜盼Ellen
本指南将引导您了解并使用位于 https://github.com/cyang-kth/fmm.git 的开源项目“快速地图匹配框架”。此框架基于C++开发,集成了隐马尔可夫模型和预计算技术,专为匹配有噪声的GPS数据到道路网络设计,提供高效且可扩展的解决方案。
1. 目录结构及介绍
FMM项目遵循清晰的文件组织结构,以下为主要目录和它们的功能:
appveyor.yml,travis.yml- 自动化构建配置文件,用于CI/CD流程。build- 编译生成的目标文件夹,包括可执行文件和库。cmake- CMake脚本,用于跨平台编译设置。docker- Docker相关配置,便于容器化部署。docs- 文档资料,可能包含API文档或开发指南。example- 示例代码和数据,帮助理解如何使用FMM。.gitignore- Git忽略文件列表。LICENSE.TXT- 项目使用的Apache-2.0许可证说明。README.md- 主要的项目介绍文件。python- 包含Python绑定的代码。src- 核心C++源代码。test,third_party- 测试代码和第三方依赖库。- 其他配置和贡献指南文件 - 如
CODE_OF_CONDUCT.md,CONTRIBUTING.md等。
2. 启动文件介绍
项目的核心在于其命令行工具,主要的启动文件并非单独列出,而是通过编译过程生成。在成功构建后,会在/usr/local/bin目录下生成以下几个可执行文件:
ubodt_gen- 生成上界起止点表(UBODT),这是预处理步骤的一部分。fmm- 实现快速地图匹配算法的主要程序。stmatch- 实现适用于大规模路网的STMATCH算法的程序。
运行这些程序通常需要提供相应的配置文件或参数。
3. 配置文件介绍
应用配置文件示例
虽然项目中没有直接提供一个名为“配置文件”的具体文件,但在实际应用中,用户需要根据FMM的命令行参数或者XML配置来准备自己的数据匹配设置。例如,在进行地图匹配时,可能需要一个XML文件来指定输入的UBODT文件名、网络文件名、GPS文件名以及输出文件名等关键信息。
<!-- 假设的配置文件样例 -->
<config>
<ubodt>path/to/your_ubodt_file</ubodt>
<network>path/to/network_shapefile</network>
<gps>path/to/gps_data.csv</gps>
<output>path/to/output_matched_data.csv</output>
<!-- 其他可选配置项如半径、GPS错误、候选数量等 -->
</config>
在使用FMM时,通过命令行直接指定参数或使用上述样例式的配置文件路径,可以灵活配置匹配过程。
以上即为FMM项目的简单介绍,包括目录结构、启动方式和配置方法概述。为了深入使用该项目,建议详细阅读GitHub上的官方文档和示例,以获取完整的安装步骤、编译指令和高级功能的应用指导。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
Ascend Extension for PyTorch
Python
221
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.86 K
React Native鸿蒙化仓库
JavaScript
260
322