AFL++中如何保存核心转储文件用于不可复现崩溃分析
2025-06-06 02:02:44作者:段琳惟
在模糊测试过程中,我们经常会遇到一个棘手问题:AFL++报告了目标程序的崩溃,但当尝试复现时却无法重现相同的崩溃场景。这种情况通常发生在目标程序存在以下特征时:
- 时间敏感性逻辑(如依赖当前时间戳的条件分支)
- 不可重复的随机数生成
- 外部状态依赖
- 多线程竞态条件
核心问题分析
传统AFL++的工作机制会记录导致崩溃的测试用例,但不会保存崩溃时的完整内存状态(核心转储文件)。当程序行为具有非确定性时,仅凭输入文件可能无法重现相同的执行路径和崩溃状态。
AFL++的解决方案
方法一:启用调试模式
通过设置环境变量AFL_DEBUG=1,AFL++会在检测到崩溃时自动保存核心转储文件。这个功能特别适合用于:
- 单次运行的崩溃捕获
- 不需要持续高速模糊测试的场景
- 作为辅助调试手段配合常规模糊测试
方法二:RECORD/REPLAY机制
对于使用持久模式(Persistent Mode)的目标程序,可以在编译时启用config.h中的RECORD/REPLAY功能。这个机制能够:
- 记录程序执行时的内部状态
- 在复现时重放这些状态
- 提高非确定性崩溃的复现率
实施建议
在实际部署时,可以采用混合策略:
- 主要模糊测试实例(8-10个)保持常规配置以获得最佳性能
- 专门配置1-2个实例启用核心转储保存功能:
export AFL_DEBUG=1 ./afl-fuzz -i input -o output -- ./target - 对于复杂的目标程序,考虑在编译时添加状态记录支持
技术细节
核心转储文件包含程序崩溃时的完整内存映像,通过gdb等调试工具可以分析:
- 崩溃时的调用栈
- 寄存器状态
- 堆内存内容
- 线程信息
这对于分析间歇性崩溃特别有价值,即使原始测试用例无法直接复现崩溃,开发人员仍可以通过核心转储了解崩溃时的程序状态。
注意事项
- 性能影响:启用核心转储保存会显著降低测试速度,仅建议在部分实例启用
- 存储需求:核心转储文件通常较大,需要监控磁盘空间
- 权限设置:确保系统允许生成核心文件(ulimit -c unlimited)
- 路径配置:检查系统配置确定核心文件的存储位置
通过合理运用这些技术,可以有效捕获和分析那些难以复现的崩溃,极大提高模糊测试的诊断能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669