Caffeine缓存库中的批量刷新机制探讨
2025-05-13 00:23:14作者:管翌锬
Caffeine作为Java领域高性能的缓存库,提供了丰富的特性来优化应用性能。在实际应用中,批量操作和自动刷新是两个非常重要的特性,但它们的结合使用却可能带来一些挑战。
批量加载与自动刷新的性能矛盾
许多开发者在使用Caffeine时会遇到一个典型场景:通过getAll方法批量获取大量缓存项可以显著减少与后端系统的交互次数,特别是当网络延迟较高时,这种批量操作带来的性能提升非常明显。
同时,为了保持缓存数据的新鲜度,开发者通常会设置refreshAfterWrite策略,让缓存项在写入后一定时间自动刷新。然而这里就出现了一个矛盾点:当批量查询触发大量需要刷新的键时,默认情况下Caffeine会逐个执行刷新操作,这就又回到了单次请求的高延迟问题。
现有解决方案:刷新合并(Refresh Coalescing)
Caffeine推荐使用"刷新合并"技术来解决这个问题。其核心思想是将短时间内产生的多个刷新请求收集起来,合并成一个批量请求执行。这种方案有几个显著优势:
- 非阻塞性:刷新操作是后台异步执行的,不会阻塞用户请求
- 灵活性:可以控制时间窗口、批量大小和并行度
- 通用性:适用于同步和异步缓存场景
实现上,可以通过响应式流库来简洁地实现这种合并逻辑。典型的配置方式如下:
var cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(Duration.ofMinutes(30))
.refreshAfterWrite(Duration.ofMinutes(10))
.build(new CoalescingBulkLoader.Builder<Integer, Integer>()
.mappingFunction(keys -> { ... })
.maxTime(Duration.ofMillis(250))
.maxSize(1_000)
.parallelism(3)
.build());
为什么不直接实现reloadAll?
虽然实现一个reloadAll方法看似是更直接的解决方案,但这会带来一些复杂性问题:
- 方法路由复杂性:当用户同时定义了
reload和loadAll但未定义reloadAll时,框架需要做出合理的选择 - 行为一致性:需要确保与单独
reload方法的行为一致性 - 实现复杂性:需要处理多种方法组合情况下的调用逻辑
相比之下,刷新合并方案更清晰且能带来更好的性能表现,因为它可以批量处理来自各种途径的刷新请求,而不仅仅是getAll触发的那些。
实际应用建议
对于需要这种功能的开发者,可以考虑以下实践:
- 指标收集:由于合并操作会影响原始统计信息,可能需要自行补充更全面的指标收集
- 批量工具:利用
CacheLoader.bulk(func)工具方法简化批量操作的实现 - 性能调优:根据实际场景调整合并的时间窗口和批量大小参数
Caffeine的设计哲学是提供基础能力,同时保持足够的灵活性,让开发者能够根据具体需求构建最适合自己应用的解决方案。理解这些设计决策背后的考量,有助于开发者更好地利用这个强大的工具构建高性能应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869