Caffeine缓存库中的批量刷新机制探讨
2025-05-13 07:38:23作者:管翌锬
Caffeine作为Java领域高性能的缓存库,提供了丰富的特性来优化应用性能。在实际应用中,批量操作和自动刷新是两个非常重要的特性,但它们的结合使用却可能带来一些挑战。
批量加载与自动刷新的性能矛盾
许多开发者在使用Caffeine时会遇到一个典型场景:通过getAll方法批量获取大量缓存项可以显著减少与后端系统的交互次数,特别是当网络延迟较高时,这种批量操作带来的性能提升非常明显。
同时,为了保持缓存数据的新鲜度,开发者通常会设置refreshAfterWrite策略,让缓存项在写入后一定时间自动刷新。然而这里就出现了一个矛盾点:当批量查询触发大量需要刷新的键时,默认情况下Caffeine会逐个执行刷新操作,这就又回到了单次请求的高延迟问题。
现有解决方案:刷新合并(Refresh Coalescing)
Caffeine推荐使用"刷新合并"技术来解决这个问题。其核心思想是将短时间内产生的多个刷新请求收集起来,合并成一个批量请求执行。这种方案有几个显著优势:
- 非阻塞性:刷新操作是后台异步执行的,不会阻塞用户请求
- 灵活性:可以控制时间窗口、批量大小和并行度
- 通用性:适用于同步和异步缓存场景
实现上,可以通过响应式流库来简洁地实现这种合并逻辑。典型的配置方式如下:
var cache = Caffeine.newBuilder()
.maximumSize(10_000)
.expireAfterWrite(Duration.ofMinutes(30))
.refreshAfterWrite(Duration.ofMinutes(10))
.build(new CoalescingBulkLoader.Builder<Integer, Integer>()
.mappingFunction(keys -> { ... })
.maxTime(Duration.ofMillis(250))
.maxSize(1_000)
.parallelism(3)
.build());
为什么不直接实现reloadAll?
虽然实现一个reloadAll方法看似是更直接的解决方案,但这会带来一些复杂性问题:
- 方法路由复杂性:当用户同时定义了
reload和loadAll但未定义reloadAll时,框架需要做出合理的选择 - 行为一致性:需要确保与单独
reload方法的行为一致性 - 实现复杂性:需要处理多种方法组合情况下的调用逻辑
相比之下,刷新合并方案更清晰且能带来更好的性能表现,因为它可以批量处理来自各种途径的刷新请求,而不仅仅是getAll触发的那些。
实际应用建议
对于需要这种功能的开发者,可以考虑以下实践:
- 指标收集:由于合并操作会影响原始统计信息,可能需要自行补充更全面的指标收集
- 批量工具:利用
CacheLoader.bulk(func)工具方法简化批量操作的实现 - 性能调优:根据实际场景调整合并的时间窗口和批量大小参数
Caffeine的设计哲学是提供基础能力,同时保持足够的灵活性,让开发者能够根据具体需求构建最适合自己应用的解决方案。理解这些设计决策背后的考量,有助于开发者更好地利用这个强大的工具构建高性能应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1