【亲测免费】 MNIST手写数字图片识别数据集详细攻略
2026-01-23 04:24:02作者:咎竹峻Karen
简介
MNIST数据集是一个广泛使用的手写数字识别数据集,包含了60,000张训练图像和10,000张测试图像。每张图像都是28x28像素的灰度图像,代表一个手写数字(0-9)。此外,数据集还提供了对应的CSV文件,方便用户进行数据处理和分析。
下载
本仓库提供了MNIST数据集的下载链接,用户可以直接下载包含手写数字图片和CSV文件的压缩包。下载后,解压缩即可获得所有数据文件。
使用方法
- 解压缩文件:下载完成后,将压缩包解压缩到本地目录。
- 查看数据集结构:解压缩后,你会看到以下文件:
train-images-idx3-ubyte.gz:训练图像文件train-labels-idx1-ubyte.gz:训练标签文件t10k-images-idx3-ubyte.gz:测试图像文件t10k-labels-idx1-ubyte.gz:测试标签文件mnist_train.csv:训练数据的CSV文件mnist_test.csv:测试数据的CSV文件
- 加载数据:
- 使用Python的
pandas库可以直接读取CSV文件:import pandas as pd train_data = pd.read_csv('mnist_train.csv') test_data = pd.read_csv('mnist_test.csv') - 使用
tensorflow或keras库可以直接加载MNIST数据集:from tensorflow.keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
- 使用Python的
- 数据预处理:
- 图像数据通常需要归一化处理,将像素值从0-255缩放到0-1之间:
train_images = train_images / 255.0 test_images = test_images / 255.0 - 标签数据通常需要进行one-hot编码:
from tensorflow.keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels)
- 图像数据通常需要归一化处理,将像素值从0-255缩放到0-1之间:
- 模型训练与评估:
- 使用深度学习框架(如TensorFlow、Keras、PyTorch等)构建模型并进行训练。
- 训练完成后,使用测试集评估模型的性能。
注意事项
- 数据集较大,下载和解压缩可能需要一些时间。
- 在使用CSV文件时,注意数据的格式和结构,确保正确读取和处理。
总结
MNIST数据集是手写数字识别领域的经典数据集,广泛应用于机器学习和深度学习模型的训练与评估。通过本仓库提供的资源文件,用户可以方便地下载和使用MNIST数据集,进行各种实验和研究。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【免费下载】 XL6009自动升降压电源原理图:电子工程师的必备利器【亲测免费】 SUSTechPOINTS 技术文档:3D点云标注工具深度指南【免费下载】 网络安全渗透测试报告模板-2023下载 开源精粹:Klipper 3D 打印机固件深度剖析【亲测免费】 ObjectARX 2020 + AutoCAD 2021 .NET 向导资源文件 Prism 项目技术文档【免费下载】 Navicat Premium 连接Oracle 11g 必备oci.dll 文件指南 TypeIt 技术文档【亲测免费】 SecGPT:引领网络安全智能化的新纪元【亲测免费】 Rescuezilla 项目下载及安装教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347