Elastic Cloud on Kubernetes (ECK) 在GKE Autopilot 1.26版本上的测试问题分析
在Elastic Cloud on Kubernetes(ECK)项目的持续集成测试中,开发团队发现了一个关键问题:当运行在Google Kubernetes Engine(GKE)Autopilot 1.26版本上时,端到端(e2e)测试无法正常执行。这个问题源于GKE Autopilot平台对资源限制的严格管控机制。
问题现象
测试Pod在运行过程中被系统强制终止,错误信息显示Pod的临时存储(ephemeral storage)使用量超过了1Gi的限制。具体表现为Pod状态变为"Evicted",并显示消息:"Pod ephemeral local storage usage exceeds the total limit of containers 1Gi"。
根本原因分析
深入调查后发现,问题由两个关键因素共同导致:
-
GKE Autopilot的资源限制机制:Autopilot模式会自动为容器设置严格的资源限制,包括CPU、内存和临时存储。在1.26版本中,临时存储被硬性限制为1Gi,任何超出此限制的Pod都会被立即终止。
-
Autopilot集群检测逻辑失效:ECK测试框架中原本包含一个检测Autopilot集群的逻辑,该逻辑通过检查"remotenodes"资源是否存在来判断是否运行在Autopilot环境中。然而在GKE 1.26版本中,这个检测方法不再有效,导致测试框架未能正确识别Autopilot环境,进而未能采取相应的资源优化措施。
技术细节
在正常情况下,ECK测试框架会为Autopilot环境做特殊处理,主要是为/tmp目录挂载专用卷以避免使用容器本身的临时存储。但当Autopilot检测失败时,这一优化措施未能生效,导致:
- Go构建过程中产生的临时文件(约761MB)直接写入容器临时存储
- Go构建缓存(约722MB)也占用容器临时存储
- 两者合计约1.5GB,远超1Gi的限制
解决方案方向
解决这一问题需要从以下几个方面考虑:
-
更新Autopilot检测逻辑:需要找到在GKE 1.26上可靠检测Autopilot环境的新方法,可能通过检查节点标签或其他特定资源。
-
优化测试资源使用:即使检测失败,也应考虑默认情况下为/tmp挂载专用卷,或者进一步减少测试过程中的临时文件生成。
-
资源限制适配:可能需要调整测试容器的资源请求和限制,使其符合Autopilot的最新要求。
对开发者的启示
这一案例展示了云平台升级可能带来的兼容性问题,特别是在托管Kubernetes服务中,平台方可能会调整底层实现细节。开发者在编写平台相关代码时应当:
- 避免依赖可能变化的实现细节(如特定资源的存在)
- 考虑为关键功能提供多种检测机制
- 为资源敏感型操作设置合理的默认值
- 建立完善的平台兼容性测试机制
通过解决这一问题,ECK项目可以确保在最新GKE版本上的测试稳定性,同时也为处理类似平台兼容性问题积累了宝贵经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C069
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00