HuggingFace Datasets 3.6.0版本发布:Xet存储加速与多项功能优化
HuggingFace Datasets是机器学习领域广受欢迎的数据集处理库,它提供了高效的数据加载、预处理和共享功能,极大简化了机器学习研究者和工程师处理数据的工作流程。近日,该项目发布了3.6.0版本,带来了一系列值得关注的新特性和改进。
Xet存储集成显著提升数据上传下载速度
3.6.0版本最引人注目的变化是引入了Xet存储支持。Xet是一种高性能的数据存储解决方案,现在被集成到Datasets库中,用于加速数据集的上传和下载操作。这一改进特别有利于处理大型数据集的研究人员,可以显著减少等待数据加载的时间。
在实际应用中,用户只需像往常一样使用push_to_hub方法上传数据集,库会自动利用Xet存储的优势。对于下载操作也同样如此,当从Hub获取数据集时,系统会自动选择最优的传输方式。这种无缝集成意味着用户无需学习新的API或改变现有工作流程,就能享受到性能提升带来的好处。
数据处理功能增强
新版本对DatasetDict.map方法进行了扩展,新增了try_original_type参数。这个参数允许用户在映射操作后尝试保持原始数据类型,而不是总是返回新的数据类型。这一改进使得数据转换过程更加灵活,特别是在需要保持特定数据格式的复杂处理流程中非常有用。
对于迭代式数据处理,3.6.0版本优化了arrow iterables的重新批处理逻辑。现在,在格式化迭代器之前会先进行重新批处理,这有助于提高数据处理管道的效率,特别是在流式处理大型数据集时。
图像处理能力改进
针对图像数据的处理,新版本修复了一个重要问题:现在Image特征能够正确处理来自Spark DataFrames的bytearray对象。这一改进使得Datasets库能够更好地与大数据处理框架Spark集成,方便用户在分布式环境中处理图像数据集后无缝迁移到Datasets中进行后续操作。
缓存与环境配置优化
3.6.0版本改进了缓存系统的文件权限处理,避免使用全局umask来设置文件模式,这增强了在不同环境下的兼容性和安全性。同时,文档中现在明确记录了HF_DATASETS_CACHE环境变量的使用方法,帮助用户更好地理解和控制数据集的缓存行为。
依赖项精简
为了保持库的轻量级特性,新版本移除了对aiohttp的直接依赖。这一变化减小了库的体积,同时避免了潜在的依赖冲突,使得Datasets库在各种环境中的部署更加顺畅。
总结
HuggingFace Datasets 3.6.0版本通过引入Xet存储支持、增强数据处理能力、改进图像处理功能等一系列优化,进一步巩固了其作为机器学习数据处理首选工具的地位。这些改进不仅提升了性能,也增强了库的稳定性和易用性,使得研究人员和工程师能够更加高效地处理各种机器学习数据集。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00