HuggingFace Datasets 3.6.0版本发布:Xet存储加速与多项功能优化
HuggingFace Datasets是机器学习领域广受欢迎的数据集处理库,它提供了高效的数据加载、预处理和共享功能,极大简化了机器学习研究者和工程师处理数据的工作流程。近日,该项目发布了3.6.0版本,带来了一系列值得关注的新特性和改进。
Xet存储集成显著提升数据上传下载速度
3.6.0版本最引人注目的变化是引入了Xet存储支持。Xet是一种高性能的数据存储解决方案,现在被集成到Datasets库中,用于加速数据集的上传和下载操作。这一改进特别有利于处理大型数据集的研究人员,可以显著减少等待数据加载的时间。
在实际应用中,用户只需像往常一样使用push_to_hub方法上传数据集,库会自动利用Xet存储的优势。对于下载操作也同样如此,当从Hub获取数据集时,系统会自动选择最优的传输方式。这种无缝集成意味着用户无需学习新的API或改变现有工作流程,就能享受到性能提升带来的好处。
数据处理功能增强
新版本对DatasetDict.map方法进行了扩展,新增了try_original_type参数。这个参数允许用户在映射操作后尝试保持原始数据类型,而不是总是返回新的数据类型。这一改进使得数据转换过程更加灵活,特别是在需要保持特定数据格式的复杂处理流程中非常有用。
对于迭代式数据处理,3.6.0版本优化了arrow iterables的重新批处理逻辑。现在,在格式化迭代器之前会先进行重新批处理,这有助于提高数据处理管道的效率,特别是在流式处理大型数据集时。
图像处理能力改进
针对图像数据的处理,新版本修复了一个重要问题:现在Image特征能够正确处理来自Spark DataFrames的bytearray对象。这一改进使得Datasets库能够更好地与大数据处理框架Spark集成,方便用户在分布式环境中处理图像数据集后无缝迁移到Datasets中进行后续操作。
缓存与环境配置优化
3.6.0版本改进了缓存系统的文件权限处理,避免使用全局umask来设置文件模式,这增强了在不同环境下的兼容性和安全性。同时,文档中现在明确记录了HF_DATASETS_CACHE环境变量的使用方法,帮助用户更好地理解和控制数据集的缓存行为。
依赖项精简
为了保持库的轻量级特性,新版本移除了对aiohttp的直接依赖。这一变化减小了库的体积,同时避免了潜在的依赖冲突,使得Datasets库在各种环境中的部署更加顺畅。
总结
HuggingFace Datasets 3.6.0版本通过引入Xet存储支持、增强数据处理能力、改进图像处理功能等一系列优化,进一步巩固了其作为机器学习数据处理首选工具的地位。这些改进不仅提升了性能,也增强了库的稳定性和易用性,使得研究人员和工程师能够更加高效地处理各种机器学习数据集。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00