TRL项目中DeepSpeed Zero-3模式下模型保存问题的分析与解决
问题背景
在使用TRL项目进行PPO-v2训练时,当采用DeepSpeed Zero-3优化策略和混合精度bf16训练时,模型在保存检查点阶段会出现"AttributeError: 'MistralForCausalLM' object has no attribute 'zero_gather_16bit_weights_on_model_save'"的错误。这个问题主要出现在策略模型保存阶段,影响了训练流程的正常完成。
技术原理分析
DeepSpeed Zero-3优化策略通过将模型参数、梯度和优化器状态分割到不同的GPU上来实现内存优化。在这种模式下,模型权重分布在多个设备上,因此在保存模型时需要特殊的处理来收集这些分散的权重。
TRL的PPOv2Trainer将策略模型(policy)和价值模型(value)封装在PolicyAndValueWrapper对象中,然后通过accelerate.prepare()方法将这个包装器转换为DeepSpeedEngine对象。然而在保存模型时,PPOv2Trainer试图直接保存策略模型,而该模型本身并不是DeepSpeedEngine实例,导致无法访问zero_gather_16bit_weights_on_model_save方法。
解决方案
经过技术分析,我们提出了两种有效的解决方案:
方案一:修改保存逻辑
class FixedPPOv2Trainer(PPOv2Trainer):
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
backup_model = self.model
self.model = self.model.policy # 仅保存策略模型
Trainer.save_model(self, output_dir, _internal_call)
self.model = backup_model
def _save(self, output_dir: Optional[str] = None, state_dict=None):
if self.is_deepspeed_enabled:
state_dict = {name.removeprefix('policy.'): param
for name, param in state_dict.items()
if name.startswith('policy.')}
super()._save(output_dir, state_dict)
方案二:直接保存策略模型
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
backup_model = self.model
self.model = self.model.policy # 仅保存策略模型
if self.is_deepspeed_enabled:
backup_deepspeed = self.deepspeed
self.deepspeed = self.model
os.makedirs(output_dir, exist_ok=True)
self.model.save_pretrained(output_dir)
self.model = backup_model
if self.is_deepspeed_enabled:
self.deepspeed = backup_deepspeed
方案比较
两种方案各有优缺点:
-
方案一更符合原始设计思路,通过修改保存逻辑来正确处理DeepSpeed Zero-3模式下的权重收集。它保持了DeepSpeedEngine的完整性,同时通过过滤state_dict来仅保存策略模型。
-
方案二更为直接,绕过了一些中间步骤直接保存策略模型。这种方法实现简单,但可能在某些边缘情况下不够健壮。
最佳实践建议
对于大多数使用场景,建议采用方案一,因为:
- 它更完整地处理了DeepSpeed Zero-3的特性
- 保持了与原始设计的一致性
- 经过了更全面的测试验证
总结
TRL项目在DeepSpeed Zero-3模式下的模型保存问题源于模型包装和DeepSpeed引擎处理的复杂性。通过理解问题的技术本质,我们提出了可靠的解决方案,使PPO-v2训练能够在Zero-3优化下顺利完成。这些解决方案不仅适用于Mistral模型,也适用于其他类似架构的大语言模型训练场景。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









