MTEB项目中的Benchmark可见性控制机制探讨
2025-07-01 10:12:57作者:韦蓉瑛
在开源项目embeddings-benchmark/mteb的开发过程中,团队遇到了一个关于Benchmark展示的典型问题。当某些基准测试(如CodeRAG)由于数据集过大或尚未完成模型测试时,直接展示在排行榜上可能会造成误解。本文将深入分析这一技术场景,并探讨最佳实践方案。
问题背景
在MTEB项目的Leaderboard展示机制中,所有注册的Benchmark默认都会显示在排行榜上。然而当遇到以下情况时,这种默认展示方式就会产生问题:
- 基准测试数据集规模过大(如CodeRAGStackoverflowPosts),导致实际运行耗时过长
- 新加入的基准测试尚未积累足够的模型测试结果
- 某些基准测试处于维护或调试状态
技术分析
当前实现中,Benchmark类缺乏对可见性的控制机制。这导致即使是没有实际测试数据的基准也会出现在排行榜上,显示为"NaN"结果,容易让用户误以为是系统错误。
解决方案设计
项目成员提出了一个优雅的改进方案:为Benchmark类增加is_visible属性。这一设计具有以下技术优势:
- 精细控制:可以针对每个基准测试单独设置是否展示
- 向后兼容:不影响现有benchmark的注册和使用方式
- 接口友好:可以通过get_benchmarks(on_leaderboard=True)这样的参数进行筛选
- 部署灵活:新基准可以先注册但不展示,待测试完成后再开放
实现建议
在具体实现上,建议采用以下技术方案:
class Benchmark:
def __init__(self, ..., is_visible=True):
self.is_visible = is_visible
...
def get_benchmarks(on_leaderboard=None):
if on_leaderboard is not None:
return [b for b in benchmarks if b.is_visible == on_leaderboard]
return benchmarks
工程实践意义
这一改进不仅解决了当前CodeRAG的展示问题,还为项目带来了更完善的基准测试管理能力:
- 渐进式发布:新基准可以先内部测试再公开
- 维护模式:可以临时隐藏正在调整的基准
- 环境适配:在不同部署环境下可以灵活控制展示内容
- 用户体验:避免用户看到不完整或无效的测试结果
总结
MTEB项目通过引入Benchmark可见性控制机制,不仅解决了特定场景下的展示问题,更提升了整个项目的工程管理能力。这种设计思路也值得其他类似的开源项目参考,特别是在需要管理多种测试场景和结果的系统中。技术团队在解决问题时,不仅着眼于当前需求,更考虑到了系统的可扩展性和长期维护性,体现了良好的软件工程实践。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44