MTEB项目中的Benchmark可见性控制机制探讨
2025-07-01 10:12:57作者:韦蓉瑛
在开源项目embeddings-benchmark/mteb的开发过程中,团队遇到了一个关于Benchmark展示的典型问题。当某些基准测试(如CodeRAG)由于数据集过大或尚未完成模型测试时,直接展示在排行榜上可能会造成误解。本文将深入分析这一技术场景,并探讨最佳实践方案。
问题背景
在MTEB项目的Leaderboard展示机制中,所有注册的Benchmark默认都会显示在排行榜上。然而当遇到以下情况时,这种默认展示方式就会产生问题:
- 基准测试数据集规模过大(如CodeRAGStackoverflowPosts),导致实际运行耗时过长
- 新加入的基准测试尚未积累足够的模型测试结果
- 某些基准测试处于维护或调试状态
技术分析
当前实现中,Benchmark类缺乏对可见性的控制机制。这导致即使是没有实际测试数据的基准也会出现在排行榜上,显示为"NaN"结果,容易让用户误以为是系统错误。
解决方案设计
项目成员提出了一个优雅的改进方案:为Benchmark类增加is_visible属性。这一设计具有以下技术优势:
- 精细控制:可以针对每个基准测试单独设置是否展示
- 向后兼容:不影响现有benchmark的注册和使用方式
- 接口友好:可以通过get_benchmarks(on_leaderboard=True)这样的参数进行筛选
- 部署灵活:新基准可以先注册但不展示,待测试完成后再开放
实现建议
在具体实现上,建议采用以下技术方案:
class Benchmark:
def __init__(self, ..., is_visible=True):
self.is_visible = is_visible
...
def get_benchmarks(on_leaderboard=None):
if on_leaderboard is not None:
return [b for b in benchmarks if b.is_visible == on_leaderboard]
return benchmarks
工程实践意义
这一改进不仅解决了当前CodeRAG的展示问题,还为项目带来了更完善的基准测试管理能力:
- 渐进式发布:新基准可以先内部测试再公开
- 维护模式:可以临时隐藏正在调整的基准
- 环境适配:在不同部署环境下可以灵活控制展示内容
- 用户体验:避免用户看到不完整或无效的测试结果
总结
MTEB项目通过引入Benchmark可见性控制机制,不仅解决了特定场景下的展示问题,更提升了整个项目的工程管理能力。这种设计思路也值得其他类似的开源项目参考,特别是在需要管理多种测试场景和结果的系统中。技术团队在解决问题时,不仅着眼于当前需求,更考虑到了系统的可扩展性和长期维护性,体现了良好的软件工程实践。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 开源电子设计自动化利器:KiCad EDA全方位使用指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
297
2.64 K
Ascend Extension for PyTorch
Python
128
151
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
607
190
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
590
127
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
489
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
47
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
179
64
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
456