AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)项目近日发布了针对TensorFlow 2.18.0版本的全新推理容器镜像。作为AWS官方维护的深度学习容器解决方案,DLC为机器学习开发者提供了预配置、优化且可直接部署的容器环境,大幅简化了模型部署的复杂度。
本次发布的TensorFlow推理镜像包含CPU和GPU两个版本,均基于Ubuntu 20.04操作系统构建,并预装了Python 3.10环境。其中GPU版本特别针对NVIDIA CUDA 12.2进行了优化,确保能够充分发挥现代GPU硬件的计算能力。
镜像技术细节
CPU版本镜像(763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-inference:2.18.0-cpu-py310-ubuntu20.04-sagemaker)包含了TensorFlow Serving API 2.18.0,以及一系列常用的Python依赖包,如boto3、requests、protobuf等,方便开发者与AWS服务进行交互。
GPU版本镜像(763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-inference:2.18.0-gpu-py310-cu122-ubuntu20.04-sagemaker)除了包含CPU版本的所有功能外,还预装了CUDA 12.2工具包、cuDNN和NCCL库,为分布式训练和推理提供了完整的GPU加速支持。
关键软件包版本
两个镜像都包含了以下重要软件包:
- TensorFlow Serving API:2.18.0(GPU版本为tensorflow-serving-api-gpu)
- Protobuf:4.25.6
- Boto3:1.36.23
- AWS CLI:1.37.23
- Cython:0.29.37
这些预装的软件包确保了开箱即用的体验,开发者无需花费时间配置基础环境,可以直接专注于模型部署和推理服务的开发。
适用场景
这些镜像特别适合以下场景:
- 需要在AWS SageMaker服务上部署TensorFlow模型的开发者
- 希望快速搭建TensorFlow推理服务而不想处理复杂依赖关系的团队
- 需要保证生产环境一致性的机器学习工程师
- 希望利用最新TensorFlow 2.18.0特性的用户
AWS Deep Learning Containers通过提供这些经过严格测试和优化的容器镜像,帮助开发者节省了大量环境配置时间,同时确保了生产环境的稳定性和性能。对于企业级机器学习应用部署来说,使用这些官方维护的容器镜像可以显著降低运维复杂度,提高部署效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00