AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)项目近日发布了针对TensorFlow 2.18.0版本的全新推理容器镜像。作为AWS官方维护的深度学习容器解决方案,DLC为机器学习开发者提供了预配置、优化且可直接部署的容器环境,大幅简化了模型部署的复杂度。
本次发布的TensorFlow推理镜像包含CPU和GPU两个版本,均基于Ubuntu 20.04操作系统构建,并预装了Python 3.10环境。其中GPU版本特别针对NVIDIA CUDA 12.2进行了优化,确保能够充分发挥现代GPU硬件的计算能力。
镜像技术细节
CPU版本镜像(763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-inference:2.18.0-cpu-py310-ubuntu20.04-sagemaker)包含了TensorFlow Serving API 2.18.0,以及一系列常用的Python依赖包,如boto3、requests、protobuf等,方便开发者与AWS服务进行交互。
GPU版本镜像(763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-inference:2.18.0-gpu-py310-cu122-ubuntu20.04-sagemaker)除了包含CPU版本的所有功能外,还预装了CUDA 12.2工具包、cuDNN和NCCL库,为分布式训练和推理提供了完整的GPU加速支持。
关键软件包版本
两个镜像都包含了以下重要软件包:
- TensorFlow Serving API:2.18.0(GPU版本为tensorflow-serving-api-gpu)
- Protobuf:4.25.6
- Boto3:1.36.23
- AWS CLI:1.37.23
- Cython:0.29.37
这些预装的软件包确保了开箱即用的体验,开发者无需花费时间配置基础环境,可以直接专注于模型部署和推理服务的开发。
适用场景
这些镜像特别适合以下场景:
- 需要在AWS SageMaker服务上部署TensorFlow模型的开发者
- 希望快速搭建TensorFlow推理服务而不想处理复杂依赖关系的团队
- 需要保证生产环境一致性的机器学习工程师
- 希望利用最新TensorFlow 2.18.0特性的用户
AWS Deep Learning Containers通过提供这些经过严格测试和优化的容器镜像,帮助开发者节省了大量环境配置时间,同时确保了生产环境的稳定性和性能。对于企业级机器学习应用部署来说,使用这些官方维护的容器镜像可以显著降低运维复杂度,提高部署效率。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00