Immich-go项目中的资产删除问题分析与解决方案
问题背景
在Immich-go项目(一个用于管理个人照片和视频的开源工具)的使用过程中,用户遇到了上传进度卡在75%的问题。经过分析,发现这与服务器端资产删除操作有关。当用户尝试上传大量文件(约12.5万)时,系统会在处理需要替换的旧资产时出现停滞。
问题现象
用户使用Immich-go 0.18.1版本上传大量媒体文件时,观察到以下现象:
- 上传进度停滞在75%
- 日志显示有403个服务器资产需要删除
- 服务器负载达到100%,有41,000个待处理作业
- 增加客户端超时设置后,进程会在所有活动作业处理完成后终止
技术分析
资产删除机制
Immich-go的资产删除逻辑设计为:只有当上传的资产是更好的版本(相同文件名、相同拍摄日期)时,才会删除服务器上的旧资产。删除操作是通过批量API调用实现的,将需要删除的资产ID列表一次性提交给服务器。
问题根源
经过深入分析,发现几个关键问题点:
-
批量删除请求过大:当需要删除的资产数量较多时(如403个),单个请求体可能过大,导致服务器处理困难或超时。
-
错误处理不完善:当删除请求中某个资产ID无效时,整个批量删除操作会失败,但客户端没有正确处理这种部分失败的情况。
-
删除操作时机:所有需要删除的资产被累积到最后阶段统一处理,而不是在发现需要替换时立即删除,这增加了最终阶段的处理压力。
解决方案
项目维护者针对这些问题实施了以下改进:
-
立即删除策略:修改为在发现需要替换的资产时立即删除,而不是累积到最后统一处理。这分散了删除操作的压力。
-
错误处理增强:改进了对删除操作失败的处理逻辑,确保单个资产删除失败不会影响整体进程。
-
请求体优化:对批量删除请求进行了优化,防止因请求体过大导致的问题。
实施效果
经过这些改进后:
- 上传过程不再会在75%处停滞
- 系统能够更稳定地处理大量资产的替换操作
- 错误处理更加健壮,部分失败不会导致整个进程中断
最佳实践建议
对于使用Immich-go处理大量媒体文件的用户,建议:
-
使用最新版本的Immich-go,其中包含了这些修复和改进。
-
对于特别大的媒体库,可以考虑分批次上传,而不是一次性处理所有文件。
-
监控服务器资源使用情况,确保有足够的处理能力。
-
如遇问题,可以启用调试日志(使用-debug-counters参数)帮助诊断问题。
总结
Immich-go项目通过这次问题修复,显著提升了处理大量媒体文件时的稳定性和可靠性。这体现了开源项目通过社区反馈不断改进的典型过程,也为处理类似批量操作提供了有价值的参考案例。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00