Immich-go项目中的资产删除问题分析与解决方案
问题背景
在Immich-go项目(一个用于管理个人照片和视频的开源工具)的使用过程中,用户遇到了上传进度卡在75%的问题。经过分析,发现这与服务器端资产删除操作有关。当用户尝试上传大量文件(约12.5万)时,系统会在处理需要替换的旧资产时出现停滞。
问题现象
用户使用Immich-go 0.18.1版本上传大量媒体文件时,观察到以下现象:
- 上传进度停滞在75%
- 日志显示有403个服务器资产需要删除
- 服务器负载达到100%,有41,000个待处理作业
- 增加客户端超时设置后,进程会在所有活动作业处理完成后终止
技术分析
资产删除机制
Immich-go的资产删除逻辑设计为:只有当上传的资产是更好的版本(相同文件名、相同拍摄日期)时,才会删除服务器上的旧资产。删除操作是通过批量API调用实现的,将需要删除的资产ID列表一次性提交给服务器。
问题根源
经过深入分析,发现几个关键问题点:
-
批量删除请求过大:当需要删除的资产数量较多时(如403个),单个请求体可能过大,导致服务器处理困难或超时。
-
错误处理不完善:当删除请求中某个资产ID无效时,整个批量删除操作会失败,但客户端没有正确处理这种部分失败的情况。
-
删除操作时机:所有需要删除的资产被累积到最后阶段统一处理,而不是在发现需要替换时立即删除,这增加了最终阶段的处理压力。
解决方案
项目维护者针对这些问题实施了以下改进:
-
立即删除策略:修改为在发现需要替换的资产时立即删除,而不是累积到最后统一处理。这分散了删除操作的压力。
-
错误处理增强:改进了对删除操作失败的处理逻辑,确保单个资产删除失败不会影响整体进程。
-
请求体优化:对批量删除请求进行了优化,防止因请求体过大导致的问题。
实施效果
经过这些改进后:
- 上传过程不再会在75%处停滞
- 系统能够更稳定地处理大量资产的替换操作
- 错误处理更加健壮,部分失败不会导致整个进程中断
最佳实践建议
对于使用Immich-go处理大量媒体文件的用户,建议:
-
使用最新版本的Immich-go,其中包含了这些修复和改进。
-
对于特别大的媒体库,可以考虑分批次上传,而不是一次性处理所有文件。
-
监控服务器资源使用情况,确保有足够的处理能力。
-
如遇问题,可以启用调试日志(使用-debug-counters参数)帮助诊断问题。
总结
Immich-go项目通过这次问题修复,显著提升了处理大量媒体文件时的稳定性和可靠性。这体现了开源项目通过社区反馈不断改进的典型过程,也为处理类似批量操作提供了有价值的参考案例。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00