freeCodeCamp计算机基础测验题目优化分析
2025-04-26 08:08:49作者:咎岭娴Homer
在freeCodeCamp的计算机基础测验中,一道关于计算机硬件组件的题目引起了开发团队的讨论。这道题目原本考察的是计算机主板上的组件,但存在一些表述不够准确的问题。
原题目分析
原题目问的是"Which of the following parts are found in the circuit board of a computer?"(计算机电路板中包含以下哪些部件?),并给出了四个选项:
- 打印机和路由器(错误选项)
- 鼠标和键盘(错误选项)
- 硬盘和显卡(干扰选项)
- CPU和内存(正确答案)
这个题目存在三个主要问题:
- 术语使用不当:"电路板"这个表述不够专业,在前面的题目中已经使用了更准确的"主板"一词
- 介词选择问题:"in"(在...内)暗示了包含关系,而实际上这些组件是"on"(在...上)主板
- 干扰选项设计:现代计算机中,M.2硬盘和集成显卡确实会直接安装在主板上
技术背景
在计算机硬件架构中,主板(Motherboard)是连接所有核心组件的中心电路板。传统上:
- CPU通过专用插座安装在主板上
- 内存通过DIMM插槽安装在主板上
- 硬盘通常通过SATA或M.2接口连接
- 显卡可能通过PCIe插槽或直接集成在主板上
随着技术发展,硬件集成度越来越高,许多原本独立的外设现在都可能被集成到主板上,这使得相关测验题目的设计需要更加精确。
优化建议
经过团队讨论,提出了两种优化方案:
-
修改原题目表述为:"Which of the following parts are most likely to be found mounted directly on the motherboard?"(以下哪些部件最有可能直接安装在主板上?)
这种表述:
- 使用更专业的"motherboard"术语
- 强调"directly on"的直接安装关系
- 通过"most likely"让学员选择最可能的情况
-
完全替换题目为更明确的:"Which of the following parts is located in a socket on the motherboard?"(以下哪个部件位于主板的插座中?)
这种表述:
- 明确指向CPU的安装方式
- 干扰选项设计更清晰(路由器、键盘、硬盘)
- 与课程视频内容更匹配
教学意义
计算机基础教学中的硬件知识题目需要特别注意:
- 术语一致性:在整个课程中使用统一的专业术语
- 技术发展:考虑硬件技术的演进对传统概念的影响
- 干扰选项:设计既要有区分度,又不能过于模糊
- 表述精确:避免可能引起歧义的介词和修饰语
freeCodeCamp团队最终选择了第二种方案,这将帮助学员更清晰地理解计算机硬件的物理连接方式,特别是CPU与主板的连接关系。这种精确的题目设计有助于建立扎实的计算机基础知识体系。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492