freeCodeCamp计算机基础测验题目优化分析
2025-04-26 08:08:49作者:咎岭娴Homer
在freeCodeCamp的计算机基础测验中,一道关于计算机硬件组件的题目引起了开发团队的讨论。这道题目原本考察的是计算机主板上的组件,但存在一些表述不够准确的问题。
原题目分析
原题目问的是"Which of the following parts are found in the circuit board of a computer?"(计算机电路板中包含以下哪些部件?),并给出了四个选项:
- 打印机和路由器(错误选项)
- 鼠标和键盘(错误选项)
- 硬盘和显卡(干扰选项)
- CPU和内存(正确答案)
这个题目存在三个主要问题:
- 术语使用不当:"电路板"这个表述不够专业,在前面的题目中已经使用了更准确的"主板"一词
- 介词选择问题:"in"(在...内)暗示了包含关系,而实际上这些组件是"on"(在...上)主板
- 干扰选项设计:现代计算机中,M.2硬盘和集成显卡确实会直接安装在主板上
技术背景
在计算机硬件架构中,主板(Motherboard)是连接所有核心组件的中心电路板。传统上:
- CPU通过专用插座安装在主板上
- 内存通过DIMM插槽安装在主板上
- 硬盘通常通过SATA或M.2接口连接
- 显卡可能通过PCIe插槽或直接集成在主板上
随着技术发展,硬件集成度越来越高,许多原本独立的外设现在都可能被集成到主板上,这使得相关测验题目的设计需要更加精确。
优化建议
经过团队讨论,提出了两种优化方案:
-
修改原题目表述为:"Which of the following parts are most likely to be found mounted directly on the motherboard?"(以下哪些部件最有可能直接安装在主板上?)
这种表述:
- 使用更专业的"motherboard"术语
- 强调"directly on"的直接安装关系
- 通过"most likely"让学员选择最可能的情况
-
完全替换题目为更明确的:"Which of the following parts is located in a socket on the motherboard?"(以下哪个部件位于主板的插座中?)
这种表述:
- 明确指向CPU的安装方式
- 干扰选项设计更清晰(路由器、键盘、硬盘)
- 与课程视频内容更匹配
教学意义
计算机基础教学中的硬件知识题目需要特别注意:
- 术语一致性:在整个课程中使用统一的专业术语
- 技术发展:考虑硬件技术的演进对传统概念的影响
- 干扰选项:设计既要有区分度,又不能过于模糊
- 表述精确:避免可能引起歧义的介词和修饰语
freeCodeCamp团队最终选择了第二种方案,这将帮助学员更清晰地理解计算机硬件的物理连接方式,特别是CPU与主板的连接关系。这种精确的题目设计有助于建立扎实的计算机基础知识体系。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869