freeCodeCamp计算机基础测验题目优化分析
2025-04-26 14:22:36作者:咎岭娴Homer
在freeCodeCamp的计算机基础测验中,一道关于计算机硬件组件的题目引起了开发团队的讨论。这道题目原本考察的是计算机主板上的组件,但存在一些表述不够准确的问题。
原题目分析
原题目问的是"Which of the following parts are found in the circuit board of a computer?"(计算机电路板中包含以下哪些部件?),并给出了四个选项:
- 打印机和路由器(错误选项)
- 鼠标和键盘(错误选项)
- 硬盘和显卡(干扰选项)
- CPU和内存(正确答案)
这个题目存在三个主要问题:
- 术语使用不当:"电路板"这个表述不够专业,在前面的题目中已经使用了更准确的"主板"一词
- 介词选择问题:"in"(在...内)暗示了包含关系,而实际上这些组件是"on"(在...上)主板
- 干扰选项设计:现代计算机中,M.2硬盘和集成显卡确实会直接安装在主板上
技术背景
在计算机硬件架构中,主板(Motherboard)是连接所有核心组件的中心电路板。传统上:
- CPU通过专用插座安装在主板上
- 内存通过DIMM插槽安装在主板上
- 硬盘通常通过SATA或M.2接口连接
- 显卡可能通过PCIe插槽或直接集成在主板上
随着技术发展,硬件集成度越来越高,许多原本独立的外设现在都可能被集成到主板上,这使得相关测验题目的设计需要更加精确。
优化建议
经过团队讨论,提出了两种优化方案:
-
修改原题目表述为:"Which of the following parts are most likely to be found mounted directly on the motherboard?"(以下哪些部件最有可能直接安装在主板上?)
这种表述:
- 使用更专业的"motherboard"术语
- 强调"directly on"的直接安装关系
- 通过"most likely"让学员选择最可能的情况
-
完全替换题目为更明确的:"Which of the following parts is located in a socket on the motherboard?"(以下哪个部件位于主板的插座中?)
这种表述:
- 明确指向CPU的安装方式
- 干扰选项设计更清晰(路由器、键盘、硬盘)
- 与课程视频内容更匹配
教学意义
计算机基础教学中的硬件知识题目需要特别注意:
- 术语一致性:在整个课程中使用统一的专业术语
- 技术发展:考虑硬件技术的演进对传统概念的影响
- 干扰选项:设计既要有区分度,又不能过于模糊
- 表述精确:避免可能引起歧义的介词和修饰语
freeCodeCamp团队最终选择了第二种方案,这将帮助学员更清晰地理解计算机硬件的物理连接方式,特别是CPU与主板的连接关系。这种精确的题目设计有助于建立扎实的计算机基础知识体系。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210