Makani:大规模并行训练机器学习天气和气候模型
2024-06-08 09:29:47作者:胡唯隽
项目简介
Makani,源于夏威夷语中的“风”,是一个专为在PyTorch中研究和开发基于机器学习的天气和气候预测模型而设计的实验性库。它起源于NVIDIA工程师和NERSC研究人员对FourCastNet的训练工作,并已用于前沿的研究项目。稳定的功能会定期移植到NVIDIA Modulus框架中,该框架用于在科学和工程领域训练Physics-ML模型。
技术剖析
Makani支持大规模并行训练,可在100+个GPU上运行,旨在推动下一代天气和气候模型的发展。这个库采用PyTorch编写,提供各种模型并行和数据并行方案,如异步数据加载、不可预见通道、自回归训练等。特别是,它被用来训练如Spherical Fourier Neural Operators (SFNO) 和 Adaptive Fourier Neural Operators (AFNO) 这样的模型。
应用场景
Makani的用途广泛,尤其适合于需要高效处理大量气象和气候数据的应用。它可以用于:
- 实时或短期天气预报
- 长期气候模式模拟
- 大规模环境影响评估
- 灾害预警系统
- 能源管理(如风电场优化)
项目特点
- 高度并行化:支持多达数百个GPU的并行训练,加速模型训练。
- 灵活的架构:适应不同的机器学习模型,包括先进的神经网络架构。
- 自动混合精度:通过自动混合精度训练减少内存需求,提高运算速度。
- 异步数据加载:减少I/O瓶颈,提升训练效率。
- 多种优化策略:支持CUDA图、激活检查点、多步训练等多种优化方式,以适应大型模型。
开始使用
要安装Makani,只需执行以下命令:
git clone git@github.com:NVIDIA/makani.git
cd makani
pip install -e .
训练模型可以运行train.py,并通过命令行参数指定配置文件和目标:
mpirun -np 8 --allow-run-as-root python -u makani.train --yaml_config="config/sfnonet.yaml" --config="sfno_linear_73chq_sc3_layers8_edim384_asgl2"
对于更复杂的模型,可通过组合上述优化策略来有效利用资源。
结论
Makani是机器学习应用于气象学领域的强大工具,其创新的并行计算能力和高效的训练方法为天气和气候建模带来了革命性的变革。无论是研究人员还是开发者,都可以借助Makani快速构建和训练大规模预测模型,探索地球大气的新理解。立即加入,开启您的天气与气候智能预测之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1