RaMViD项目教程
2025-04-21 00:54:57作者:滑思眉Philip
1. 项目介绍
RaMViD(Randomized Multiscale Video Diffusion)是一个基于扩散模型的开源项目,用于视频预测和填充。它基于论文《Diffusion Models for Video Prediction and Infilling》的实现,由Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, Andrea Dittadi等人合作完成。该项目可以在多个视频数据集上进行训练,如Kinetics-600、BAIR和UCF-101,以预测视频帧或填充视频中的缺失部分。
2. 项目快速启动
环境准备
首先,您需要准备Python环境并安装所需的依赖。使用以下命令创建一个enroot容器:
enroot import docker://nvcr.io#nvidia/pytorch:21.04-py3
enroot create --name container_name nvidia+pytorch+21.04-py3.sqsh
然后,在容器内部安装所需的Python包:
pip install torch
pip install tqdm
pip install blobfile>=0.11.0
pip install mpi4py
pip install matplotlib
pip install av
数据准备
将您的视频数据放入一个文件夹中,并确保它们是.gif、.mp4或.av格式。训练脚本将需要一个指向这个文件夹的路径:
--data_dir path/to/videos
训练模型
根据您的数据集选择适当的模型、扩散过程和训练标志。以下是三个数据集的示例标志:
- Kinetics-600:
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --scale_time_dim 0"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 2e-5 --batch_size 8 --microbatch 2 --seq_len 16 --max_num_mask_frames 4 --uncondition_rate 0.25"
- BAIR:
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 2 --scale_time_dim 0"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 2e-5 --batch_size 4 --microbatch 2 --seq_len 20 --max_num_mask_frames 4 --uncondition_rate 0.25"
- UCF-101:
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --scale_time_dim 0"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 2e-5 --batch_size 8 --microbatch 2 --seq_len 16 --max_num_mask_frames 4 --uncondition_rate 0.75"
使用以下命令开始训练:
python scripts/video_train.py --data_dir path/to/videos $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
如果您想要进行分布式训练,可以使用mpirun:
mpirun -n $NUM_GPUS python scripts/video_train.py --data_dir path/to/videos $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
模型采样
训练完成后,您可以使用训练脚本保存的检查点文件来生成样本。以下是生成样本的命令:
python scripts/video_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS
3. 应用案例和最佳实践
- 视频预测:在视频处理和编辑中,可以使用RaMViD来预测视频帧,以便在视频编辑过程中填充或修正缺失的部分。
- 视频填充:对于损坏或不完整的视频数据,RaMViD可以用来填充缺失的帧,恢复视频的完整性。
4. 典型生态项目
目前,RaMViD的生态项目还比较有限,但以下是一些可能的扩展和应用:
- 集成到视频编辑软件:将RaMViD集成到专业的视频编辑软件中,提供实时的视频预测和填充功能。
- 研究扩展:学术研究人员可以利用RaMViD进行视频处理相关的研究,进一步优化和改进模型。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1