RaMViD项目教程
2025-04-21 01:03:20作者:滑思眉Philip
1. 项目介绍
RaMViD(Randomized Multiscale Video Diffusion)是一个基于扩散模型的开源项目,用于视频预测和填充。它基于论文《Diffusion Models for Video Prediction and Infilling》的实现,由Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, Andrea Dittadi等人合作完成。该项目可以在多个视频数据集上进行训练,如Kinetics-600、BAIR和UCF-101,以预测视频帧或填充视频中的缺失部分。
2. 项目快速启动
环境准备
首先,您需要准备Python环境并安装所需的依赖。使用以下命令创建一个enroot容器:
enroot import docker://nvcr.io#nvidia/pytorch:21.04-py3
enroot create --name container_name nvidia+pytorch+21.04-py3.sqsh
然后,在容器内部安装所需的Python包:
pip install torch
pip install tqdm
pip install blobfile>=0.11.0
pip install mpi4py
pip install matplotlib
pip install av
数据准备
将您的视频数据放入一个文件夹中,并确保它们是.gif、.mp4或.av格式。训练脚本将需要一个指向这个文件夹的路径:
--data_dir path/to/videos
训练模型
根据您的数据集选择适当的模型、扩散过程和训练标志。以下是三个数据集的示例标志:
- Kinetics-600:
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --scale_time_dim 0"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 2e-5 --batch_size 8 --microbatch 2 --seq_len 16 --max_num_mask_frames 4 --uncondition_rate 0.25"
- BAIR:
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 2 --scale_time_dim 0"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 2e-5 --batch_size 4 --microbatch 2 --seq_len 20 --max_num_mask_frames 4 --uncondition_rate 0.25"
- UCF-101:
MODEL_FLAGS="--image_size 64 --num_channels 128 --num_res_blocks 3 --scale_time_dim 0"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 2e-5 --batch_size 8 --microbatch 2 --seq_len 16 --max_num_mask_frames 4 --uncondition_rate 0.75"
使用以下命令开始训练:
python scripts/video_train.py --data_dir path/to/videos $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
如果您想要进行分布式训练,可以使用mpirun:
mpirun -n $NUM_GPUS python scripts/video_train.py --data_dir path/to/videos $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
模型采样
训练完成后,您可以使用训练脚本保存的检查点文件来生成样本。以下是生成样本的命令:
python scripts/video_sample.py --model_path /path/to/model.pt $MODEL_FLAGS $DIFFUSION_FLAGS
3. 应用案例和最佳实践
- 视频预测:在视频处理和编辑中,可以使用RaMViD来预测视频帧,以便在视频编辑过程中填充或修正缺失的部分。
- 视频填充:对于损坏或不完整的视频数据,RaMViD可以用来填充缺失的帧,恢复视频的完整性。
4. 典型生态项目
目前,RaMViD的生态项目还比较有限,但以下是一些可能的扩展和应用:
- 集成到视频编辑软件:将RaMViD集成到专业的视频编辑软件中,提供实时的视频预测和填充功能。
- 研究扩展:学术研究人员可以利用RaMViD进行视频处理相关的研究,进一步优化和改进模型。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 正点原子串口调试助手 XCOM V2.6 下载【亲测免费】 探索数学之美:Mathlib4 - Lean 数学库【亲测免费】 flat: 创建扁平的 SVG 图像【亲测免费】 METIS:高效数据分割与图划分工具DreamCraft3D终极指南:如何用AI快速生成惊艳3D模型【亲测免费】 AnySoftKeyboard: 自定义键盘的开源解决方案终极指南:如何快速上手NettyChat实时聊天应用开发 🚀【亲测免费】 高速哈希算法:Google的HighwayHash简介 推荐一款高效Android开发工具:Fat-AAR Gentelella Bootstrap 4 行政仪表板模板教程
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19