RA Data Warehouse dbt 项目使用教程
2024-08-17 02:16:11作者:郜逊炳
1. 项目的目录结构及介绍
RA Data Warehouse dbt 项目的目录结构如下:
ra_data_warehouse/
├── README.md
├── dbt_project.yml
├── models/
│ ├── core/
│ ├── finance/
│ ├── marketing/
│ └── ...
├── snapshots/
├── tests/
├── analyses/
├── macros/
├── seeds/
├── packages.yml
└── ...
目录结构介绍
README.md: 项目说明文件,包含项目的基本信息和使用指南。dbt_project.yml: 项目的主配置文件,定义项目的基本配置和模型路径。models/: 包含所有的数据模型文件,按照不同的主题(如 core, finance, marketing 等)进行组织。snapshots/: 用于存储快照文件,记录数据在特定时间点的状态。tests/: 包含测试文件,用于验证数据模型的正确性。analyses/: 用于存储分析文件,进行数据分析和探索。macros/: 包含自定义的宏文件,用于在模型中复用代码。seeds/: 用于存储静态数据文件,如 CSV 文件。packages.yml: 定义项目依赖的其他 dbt 包。
2. 项目的启动文件介绍
项目的启动文件主要是 dbt_project.yml,它是 dbt 项目的主配置文件,包含以下关键配置:
name: 'ra_data_warehouse'
version: '1.0.0'
config-version: 2
profile: 'ra_data_warehouse'
source-paths: ["models"]
analysis-paths: ["analyses"]
test-paths: ["tests"]
snapshot-paths: ["snapshots"]
macro-paths: ["macros"]
seed-paths: ["seeds"]
target-path: "target"
clean-targets:
- "target"
- "dbt_modules"
- "logs"
models:
ra_data_warehouse:
core:
+materialized: view
finance:
+materialized: table
marketing:
+materialized: incremental
启动文件介绍
name: 项目的名称。version: 项目的版本号。profile: 定义使用的 dbt 配置文件。source-paths: 定义模型文件的路径。analysis-paths: 定义分析文件的路径。test-paths: 定义测试文件的路径。snapshot-paths: 定义快照文件的路径。macro-paths: 定义宏文件的路径。seed-paths: 定义静态数据文件的路径。target-path: 定义生成的目标文件路径。clean-targets: 定义清理目标文件的路径。models: 定义不同主题模型的配置,如core,finance,marketing等。
3. 项目的配置文件介绍
项目的配置文件主要是 dbt_project.yml 和 profiles.yml。
dbt_project.yml
如上所述,dbt_project.yml 是项目的主配置文件,定义了项目的基本配置和模型路径。
profiles.yml
profiles.yml 是 dbt 的配置文件,定义了连接数据仓库的配置信息,如数据库类型、用户名、密码、主机地址等。通常位于用户主目录下的 .dbt 文件夹中。
ra_data_warehouse:
target: dev
outputs:
dev:
type: bigquery
method: service-account
project: 'your-project-id'
dataset: 'your-dataset'
threads: 4
keyfile: '/path/to/your/keyfile.json'
配置文件介绍
target: 定义默认的目标环境,如dev,prod等。outputs: 定义不同环境的输出配置,如dev环境的配置。type: 定义数据仓库的类型,如bigquery,snowflake等。method: 定义连接方法,如 `service-account
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140