RA Data Warehouse dbt 项目使用教程
2024-08-17 02:16:11作者:郜逊炳
1. 项目的目录结构及介绍
RA Data Warehouse dbt 项目的目录结构如下:
ra_data_warehouse/
├── README.md
├── dbt_project.yml
├── models/
│ ├── core/
│ ├── finance/
│ ├── marketing/
│ └── ...
├── snapshots/
├── tests/
├── analyses/
├── macros/
├── seeds/
├── packages.yml
└── ...
目录结构介绍
README.md: 项目说明文件,包含项目的基本信息和使用指南。dbt_project.yml: 项目的主配置文件,定义项目的基本配置和模型路径。models/: 包含所有的数据模型文件,按照不同的主题(如 core, finance, marketing 等)进行组织。snapshots/: 用于存储快照文件,记录数据在特定时间点的状态。tests/: 包含测试文件,用于验证数据模型的正确性。analyses/: 用于存储分析文件,进行数据分析和探索。macros/: 包含自定义的宏文件,用于在模型中复用代码。seeds/: 用于存储静态数据文件,如 CSV 文件。packages.yml: 定义项目依赖的其他 dbt 包。
2. 项目的启动文件介绍
项目的启动文件主要是 dbt_project.yml,它是 dbt 项目的主配置文件,包含以下关键配置:
name: 'ra_data_warehouse'
version: '1.0.0'
config-version: 2
profile: 'ra_data_warehouse'
source-paths: ["models"]
analysis-paths: ["analyses"]
test-paths: ["tests"]
snapshot-paths: ["snapshots"]
macro-paths: ["macros"]
seed-paths: ["seeds"]
target-path: "target"
clean-targets:
- "target"
- "dbt_modules"
- "logs"
models:
ra_data_warehouse:
core:
+materialized: view
finance:
+materialized: table
marketing:
+materialized: incremental
启动文件介绍
name: 项目的名称。version: 项目的版本号。profile: 定义使用的 dbt 配置文件。source-paths: 定义模型文件的路径。analysis-paths: 定义分析文件的路径。test-paths: 定义测试文件的路径。snapshot-paths: 定义快照文件的路径。macro-paths: 定义宏文件的路径。seed-paths: 定义静态数据文件的路径。target-path: 定义生成的目标文件路径。clean-targets: 定义清理目标文件的路径。models: 定义不同主题模型的配置,如core,finance,marketing等。
3. 项目的配置文件介绍
项目的配置文件主要是 dbt_project.yml 和 profiles.yml。
dbt_project.yml
如上所述,dbt_project.yml 是项目的主配置文件,定义了项目的基本配置和模型路径。
profiles.yml
profiles.yml 是 dbt 的配置文件,定义了连接数据仓库的配置信息,如数据库类型、用户名、密码、主机地址等。通常位于用户主目录下的 .dbt 文件夹中。
ra_data_warehouse:
target: dev
outputs:
dev:
type: bigquery
method: service-account
project: 'your-project-id'
dataset: 'your-dataset'
threads: 4
keyfile: '/path/to/your/keyfile.json'
配置文件介绍
target: 定义默认的目标环境,如dev,prod等。outputs: 定义不同环境的输出配置,如dev环境的配置。type: 定义数据仓库的类型,如bigquery,snowflake等。method: 定义连接方法,如 `service-account
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178