ARD 的项目扩展与二次开发
2025-06-15 19:36:30作者:董宙帆
项目的基础介绍
ARD(Autoregressive Distillation of Diffusion Transformers)是一个开源项目,它基于PyTorch框架,对原始工作进行重新实现。该项目旨在通过利用扩散微分方程的历史轨迹来减轻暴露偏差并提高蒸馏效率。在ImageNet和文本到图像合成任务上,ARD实现了强大的性能,且需要的步骤更少,计算开销最小。
项目的核心功能
- 减轻暴露偏差:通过利用扩散微分方程的历史轨迹,ARD在蒸馏过程中减轻了暴露偏差的问题。
- 提高效率:ARD在保持高性能的同时,显著减少了所需的步骤,降低了计算开销。
- 兼容性:该项目可以应用于多种任务,如ImageNet图像识别和文本到图像的合成。
项目使用了哪些框架或库?
该项目主要使用了以下框架和库:
- PyTorch:深度学习框架,用于实现和训练模型。
- 可能还使用了诸如NumPy、PIL等常见的Python库来进行数学计算和图像处理。
项目的代码目录及介绍
项目的代码目录结构大致如下:
ARD/
├── assets/
├── diffusion/
├── LICENSE
├── README.md
├── dataset.py
├── download.py
├── environment.yml
├── models.py
├── models_ARD.py
├── models_discriminator.py
├── sample_ARD.py
├── sample_trajectory.py
├── train_ARD.py
├── train_ARD_gan.py
└── ...
- assets/: 存储可能需要的数据集或预训练模型文件。
- diffusion/: 实现与扩散过程相关的代码。
- dataset.py: 数据集加载和预处理相关的代码。
- download.py: 下载必要数据集的脚本。
- models.py: 基础模型的定义。
- models_ARD.py: ARD模型的特定实现。
- models_discriminator.py: 判别器的模型定义。
- sample_ARD.py: 用于样本生成的代码。
- sample_trajectory.py: 用于采样扩散轨迹的代码。
- train_ARD.py: ARD模型训练的脚本。
- train_ARD_gan.py: 带有GAN损失的ARD模型训练脚本。
对项目进行扩展或者二次开发的方向
- 增强模型能力:可以通过集成其他先进的模型架构或技术来增强ARD模型的能力。
- 多模态扩展:项目可以扩展以支持多模态数据,例如视频或音频,而不仅仅是图像。
- 优化和性能提升:优化现有代码,提高效率,减少计算资源的需求。
- 用户界面和交互:开发一个用户友好的界面,使得非技术用户也能轻松使用ARD模型。
- 数据增强和预处理:改进数据预处理和增强策略,以提高模型的泛化能力和鲁棒性。
- 模型可解释性:增强模型的可解释性,帮助用户理解模型的决策过程。
通过上述的扩展和二次开发,ARD项目可以更好地服务于研究社区,并在实际应用中发挥更大的作用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135