MNN框架下YOLOv11-OBB旋转目标检测的实现与优化
2025-05-22 07:46:30作者:廉皓灿Ida
旋转目标检测(OBB)是计算机视觉领域的一个重要研究方向,相比传统的水平框检测(HBB),旋转框能够更精确地定位带有角度的目标。本文将详细介绍如何在MNN推理框架中实现YOLOv11-OBB模型的部署与优化。
YOLOv11-OBB模型特点
YOLOv11-OBB是基于YOLOv11改进的旋转目标检测模型,其输出包含目标的中心点坐标(x,y)、宽度(w)、高度(h)、置信度(confidence)以及旋转角度(angle)。与标准YOLO模型相比,OBB版本在边界框表示上增加了角度参数,能够更准确地描述旋转目标。
MNN模型转换关键步骤
-
模型格式转换:首先需要将PyTorch训练的.pt模型转换为ONNX格式,然后再转换为MNN格式。这一过程需要注意保持输出节点的正确性。
-
输出张量解析:转换后的MNN模型输出为[6,8400]的张量,其中6个维度分别对应:
- 0: 归一化后的中心点x坐标
- 1: 归一化后的中心点y坐标
- 2: 归一化后的宽度w
- 3: 归一化后的高度h
- 4: 置信度分数
- 5: 旋转角度(弧度制)
后处理实现要点
坐标转换与还原
# 将归一化坐标还原为原始图像坐标
cx = (output_var_np[0] * 640 - pad_w) / scale
cy = (output_var_np[1] * 640 - pad_h) / scale
w = output_var_np[2] * 640 / scale
h = output_var_np[3] * 640 / scale
旋转非极大值抑制(R-NMS)
旋转目标检测需要使用专门的NMS算法处理带角度的边界框。我们实现了基于概率IoU的旋转NMS:
def nms_rotated(boxes, scores, threshold=0.45):
if len(boxes) == 0:
return np.empty((0,), dtype=np.int8)
sorted_idx = np.argsort(scores)[::-1]
boxes = boxes[sorted_idx]
ious = batch_probiou(boxes, boxes)
ious = np.triu(ious, k=1)
pick = np.where(ious.max(axis=0) < threshold)[0]
return sorted_idx[pick]
旋转框可视化
使用OpenCV的boxPoints函数将旋转矩形参数转换为四个角点:
rect = ((float(cx), float(cy)), (float(w), float(h)), np.degrees(float(angle)))
box_points = cv2.boxPoints(rect)
box_points = np.intp(box_points)
cv2.drawContours(new_Image, [box_points], 0, (0, 255, 0), 2)
性能优化建议
-
预处理优化:使用MNN内置的CV函数进行图像缩放和填充,相比使用OpenCV能获得更好的性能。
-
推理配置调优:根据目标硬件平台选择合适的精度和backend:
config['precision'] = 'normal' # 可选: normal, low, high, lowBF config['backend'] = 'CPU' # 可选: CPU, OPENCL, VULKAN等 config['numThread'] = 4 # 根据CPU核心数调整 -
后处理并行化:对于高分辨率图像或密集目标场景,可以考虑将NMS等后处理步骤并行化。
实际应用注意事项
-
角度表示:YOLOv11-OBB输出的角度为弧度制,在可视化时需要转换为角度制。
-
边界处理:旋转矩形可能超出图像边界,在实际应用中需要做裁剪处理。
-
模型量化:对于移动端部署,可以考虑将模型量化为INT8格式,显著提升推理速度。
通过本文介绍的方法,开发者可以成功在MNN框架上部署YOLOv11-OBB旋转目标检测模型,并在各种硬件平台上获得高效的推理性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134