OpenRLHF项目中跨节点VLLM引擎初始化卡死问题分析与解决方案
问题背景
在OpenRLHF项目中使用混合引擎(hybrid_engine)时,当VLLM引擎的tensor并行度(tp)设置为4时,系统会出现初始化卡死现象。具体表现为:在Ray分布式环境下,跨节点分配的VLLM引擎无法正常初始化,导致整个训练流程停滞。
现象分析
通过观察Ray Dashboard发现,当tp=4时,每个节点只有一个VLLM引擎能够成功初始化。系统卡在LLMRayActor.sleep方法调用处,这表明部分VLLM引擎未能完成初始化过程。值得注意的是,当tp=2时系统能够正常运行,且单节点环境下tp=4也能正常工作,问题仅出现在多节点、高并行度的场景下。
根本原因
深入分析后发现,问题的核心在于VLLM引擎在初始化Qwen-VL模型时的跨节点分配问题。当tensor并行度设置为4且分布在多个节点上时,VLLM引擎的初始化过程会出现死锁。这与Ray的资源调度机制有关,特别是当重排后的计算节点与原节点不在同一物理节点时,会导致资源分配失败。
解决方案
针对这一问题,我们提出了以下解决方案:
-
资源分配策略优化:通过设置PlacementGroupSchedulingStrategy中的placement_group_bundle_index参数为bundle_indices[0],确保资源分配的一致性。
-
节点亲和性保证:修改调度策略,确保重排后的计算节点与原节点保持在同一物理节点上,避免跨节点分配导致的初始化问题。
-
版本兼容性检查:确认VLLM和OpenRLHF的版本兼容性,建议使用最新版本以获得最佳稳定性。
实施效果
实施上述解决方案后,系统在多节点环境下能够正常初始化tp=4的VLLM引擎,混合引擎的训练流程得以顺利进行。这一改进不仅解决了当前的卡死问题,还为后续更大规模的分布式训练提供了稳定基础。
最佳实践建议
对于使用OpenRLHF进行大规模分布式训练的用户,建议:
-
在跨节点环境中,逐步增加tensor并行度进行测试,确保系统稳定性。
-
监控Ray Dashboard的资源分配情况,及时发现潜在的资源调度问题。
-
对于特定模型(如Qwen-VL)的初始化,可以增加日志输出以跟踪初始化过程。
-
考虑使用较新的VLLM v1引擎,其在分布式环境下的稳定性有所提升。
通过以上分析和解决方案,OpenRLHF项目在混合引擎模式下的稳定性和可用性得到了显著提升,为大规模语言模型训练提供了更可靠的基础设施支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00