React Native Image Picker 隐私清单适配指南
随着苹果对用户隐私保护要求的日益严格,2024年5月1日起,所有提交至App Store的iOS应用都必须正确声明其使用的隐私相关API。本文针对React Native Image Picker库中涉及的隐私API使用情况进行分析,并提供完整的适配方案。
背景与现状
React Native Image Picker是一个广泛使用的图片选择组件,在其iOS实现中调用了多个需要声明隐私理由的API。根据苹果最新政策,这些API调用必须在应用的隐私清单文件中明确说明使用目的。
目前发现的主要问题包括:
- 文件创建时间(creationDate)访问
- 磁盘空间查询
- 系统启动时间获取
- 用户偏好设置访问
这些API调用分布在图片选择器的核心功能中,主要用于获取文件元数据、检查存储空间等基础操作。
技术解决方案
隐私清单文件配置
开发者需要在Xcode项目中创建名为PrivacyInfo.xcprivacy的隐私清单文件,并添加以下声明:
<dict>
<key>NSPrivacyAccessedAPITypes</key>
<array>
<dict>
<key>NSPrivacyAccessedAPIType</key>
<string>NSPrivacyAccessedAPICategoryFileTimestamp</string>
<key>NSPrivacyAccessedAPITypeReasons</key>
<array>
<string>3B52.1</string>
</array>
</dict>
<dict>
<key>NSPrivacyAccessedAPIType</key>
<string>NSPrivacyAccessedAPICategoryDiskSpace</string>
<key>NSPrivacyAccessedAPITypeReasons</key>
<array>
<string>85F4.1</string>
</array>
</dict>
<dict>
<key>NSPrivacyAccessedAPIType</key>
<string>NSPrivacyAccessedAPICategorySystemBootTime</string>
<key>NSPrivacyAccessedAPITypeReasons</key>
<array>
<string>35F9.1</string>
</array>
</dict>
<dict>
<key>NSPrivacyAccessedAPIType</key>
<string>NSPrivacyAccessedAPICategoryUserDefaults</string>
<key>NSPrivacyAccessedAPITypeReasons</key>
<array>
<string>1C8F.1</string>
</array>
</dict>
</array>
</dict>
各API对应的理由说明
-
文件时间戳访问(3B52.1)
用于获取用户通过文件选择器明确授权的文件或目录的时间戳、大小等元数据信息。 -
磁盘空间查询(85F4.1)
检查可用存储空间以确保应用功能正常运行,特别是处理大文件时。 -
系统启动时间获取(35F9.1)
用于计算时间间隔或性能监控等基础功能。 -
用户偏好设置访问(1C8F.1)
读写应用的标准偏好设置数据。
实施建议
对于使用React Native Image Picker的开发者,建议采取以下措施:
-
立即检查
使用静态分析工具扫描项目,确认所有需要声明的隐私API。 -
双重声明
即使库作者后续更新了隐私清单,应用层也应保留这些声明以确保合规。 -
版本更新
关注React Native Image Picker的官方更新,及时升级到包含隐私清单的版本。 -
测试验证
提交前使用苹果的验证工具检查隐私声明完整性。
常见问题处理
若遇到审核被拒,可采取以下步骤:
- 确认隐私清单文件已正确添加到所有target
- 检查声明的理由代码是否准确
- 确保没有遗漏其他隐私API
- 必要时提供详细的使用说明给审核团队
通过以上措施,开发者可以确保应用顺利通过苹果的隐私合规审核,同时保持图片选择功能的完整性和用户体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00