AG Grid 服务端分页与客户端排序/过滤的整合方案
2025-05-16 13:05:37作者:郦嵘贵Just
在大型数据应用开发中,AG Grid 作为优秀的数据表格组件,其服务端分页(serverSide)模式能有效处理海量数据。但开发者常遇到一个典型场景:希望保持服务端分页的同时,在单页数据内实现客户端排序和过滤。这种混合模式能兼顾性能与用户体验,本文将深入解析实现方案。
核心问题分析
当启用 rowModelType='serverSide'
时,AG Grid 默认将所有数据操作(排序/过滤/分页)交由服务端处理。这种设计虽然适合大数据量场景,但对于某些业务场景会带来两个挑战:
- 高频请求压力:每次排序/过滤都触发服务端请求
- 交互延迟:用户需要等待网络往返才能看到结果
混合模式实现原理
通过配置 serverSideEnableClientSideSort=true
可激活混合模式,其工作机制如下:
- 分页保持服务端处理:继续通过
getRows
回调获取分页数据 - 排序/过滤转为客户端处理:当前页数据在浏览器内存中完成排序和过滤
这种设计实现了:
- 分页仍由服务端控制,避免大数据量传输
- 单页内的交互操作即时响应,无需网络请求
进阶配置建议
对于更复杂的场景,建议结合以下配置:
gridOptions = {
rowModelType: 'serverSide',
serverSideEnableClientSideSort: true,
serverSideEnableClientSideFilter: true, // 可选客户端过滤
cacheBlockSize: 100, // 合理设置分页大小
paginationPageSize: 20 // 控制每页显示数量
}
性能优化要点
- 分页大小权衡:
cacheBlockSize
不宜过大,建议 50-200 条 - 列定义优化:对需要客户端排序的列设置
sortable=true
- 内存管理:注意浏览器内存消耗,特别是包含复杂渲染的单元格
适用场景判断
推荐在以下情况采用此方案:
- 总数据量超过 10 万条
- 单页数据量在 500 条以内
- 用户需要频繁进行临时排序/过滤
不推荐场景:
- 需要跨页全局排序/过滤
- 单页数据超过 1000 条
- 数据实时性要求极高(需服务端计算)
实现示例
完整配置示例展示混合模式的最佳实践:
const gridOptions = {
columnDefs: [
{ field: 'name', sortable: true, filter: 'agTextColumnFilter' },
{ field: 'age', sortable: true, filter: 'agNumberColumnFilter' }
],
defaultColDef: {
filter: true,
resizable: true
},
rowModelType: 'serverSide',
serverSideEnableClientSideSort: true,
serverSideEnableClientSideFilter: true,
// 服务端数据获取
getRows: (params) => {
api.getData(params.request).then(response => {
params.successCallback(response.rows, response.lastRow);
});
}
};
通过合理配置,开发者可以在 AG Grid 中实现服务端分页与客户端操作的完美平衡,既保证大数据量下的性能,又提供流畅的用户交互体验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
519

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
181
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60