Redisson 3.47.0发布:分布式队列增强与性能优化
Redisson项目简介
Redisson是一个基于Redis的Java客户端,它不仅提供了对Redis基础数据结构的封装,还在此基础上实现了丰富的分布式Java对象和服务。作为一个成熟的Redis客户端框架,Redisson简化了在分布式环境中开发复杂应用的过程,提供了分布式锁、队列、集合、Map等高级数据结构,以及分布式服务如远程服务、定时任务等。
版本亮点解析
可靠的分布式队列增强
3.47.0版本对RReliableQueue进行了重大改进,新增了ReliableFanout对象,这是一种可靠的发布-订阅模式实现。与传统的Redis Pub/Sub不同,ReliableFanout保证了消息的可靠传递,即使在消费者暂时不可用时也不会丢失消息。
RReliableQueue现在支持两种处理模式:
- 单消费者模式:传统的队列模式,消息被一个消费者消费
- 多消费者模式:类似Kafka的消费者组模式,多个消费者可以并行处理消息
新版本还引入了监听器机制,开发者可以注册消费者监听器来接收队列状态变化的通知。同时,队列现在提供了丰富的度量指标,包括待处理消息数、处理中的消息数等,便于监控队列健康状况。
性能优化与稳定性提升
在底层连接管理方面,修复了多个可能导致连接泄漏的问题。特别是在哨兵模式下,新版本优化了故障转移后的连接管理,避免了为每个写操作创建新连接的问题。
对于集群环境中的RMap.loadAll()方法可能挂起的问题进行了修复,提升了大规模数据加载的可靠性。同时改进了"WAIT"和"WAITAOF"命令的可用性检测机制,使复制相关操作更加健壮。
数据结构功能扩展
RScoredSortedSet新增了多个集合操作相关方法:
- readDiffEntries:读取差集条目
- readIntersectionEntries:读取交集条目
- readUnionEntries:读取并集条目
这些方法为需要复杂集合运算的场景提供了更高效的实现方式。
框架整合改进
Spring生态整合增强
修复了Spring Cache.getNativeCache()返回错误实例的问题,确保了与Spring Cache抽象的更好兼容。对于Spring Data Redis的ReactiveZSetCommands.zadd()方法的默认参数进行了修正,使API行为更加符合预期。
特别值得注意的是,修复了Spring Data Redis中addMessageListener()方法在向同一主题或模式添加多个监听器时可能挂起的问题,提升了高并发订阅场景下的稳定性。
Micronaut支持改进
针对Micronaut 4.x版本,修复了只能连接到单个节点的问题,现在可以正确识别和连接Redis集群中的所有节点。
开发者建议
对于正在使用或考虑使用Redisson的开发者,3.47.0版本带来了多项值得关注的改进:
- 对于需要可靠消息传递的场景,建议评估新的RReliableQueue功能和ReliableFanout对象
- 在Spring生态中使用Redisson时,可以考虑升级以获得更稳定的消息监听体验
- 对于使用集群模式的用户,新版本解决了多个稳定性问题,建议优先升级
- 新增的集合操作方法可以简化某些业务逻辑的实现,值得在代码审查时关注
这个版本的改进主要集中在分布式队列的可靠性和功能性增强,以及底层稳定性的提升,体现了Redisson项目对生产环境需求的持续关注。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









