ELPV-Dataset完整指南:太阳能电池缺陷识别的免费数据集
2026-02-07 05:00:10作者:裴锟轩Denise
ELPV-Dataset是一个专门用于太阳能电池缺陷识别的专业数据集,包含2624张标准化电致发光图像,涵盖单晶和多晶两种类型的太阳能电池,每张图像都经过专家标注缺陷概率和电池类型,是训练机器学习视觉识别模型的理想选择。
📊 数据集核心特性详解
1. 图像数据全面解析
- 规模与质量:2624张300×300像素8位灰度图像,从44个真实光伏模块中精心提取
- 缺陷类型覆盖:包括材料特性导致的内在缺陷和制造安装过程中的外在损伤
- 专业处理流程:所有图像经过尺寸归一化、透视校正和镜头畸变消除等标准化处理
图:ELPV-Dataset数据集样本概览,深色区域表示缺陷概率较高
2. 专业标注体系
每张图像都包含双重专业标注:
- 缺陷概率标注:0-1之间的浮点数值,1表示确定存在缺陷
- 电池类型标识:清晰标注为单晶(mono)或多晶(poly)
- 标注权威性:由光伏领域专家基于电致发光检测技术进行人工标注
⚡ 快速启动指南
简单安装步骤
pip install elpv-dataset
高效数据加载方法
from elpv_dataset.utils import load_dataset
images, proba, types = load_dataset()
images:numpy数组格式的图像数据proba:对应图像的缺陷概率数组types:电池类型标签数组
🛠️ 实际应用案例
基础缺陷检测模型
# 简单分类模型示例
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# 数据预处理
X = images.reshape(images.shape[0], -1)
y = (proba > 0.5).astype(int)
# 模型训练与评估
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
accuracy = model.score(X_test, y_test)
print(f"模型准确率: {accuracy:.2f}")
典型应用场景
- 光伏电站智能运维:开发自动化缺陷检测系统,提升维护效率
- 电池生产质量监控:集成到生产线,实现实时质量筛选
- 学术算法验证:测试新型计算机视觉算法在工业检测中的性能
📚 数据集结构说明
核心文件组织
src/elpv_dataset/
├── data/
│ ├── images/ # 所有太阳能电池图像
│ └── labels.csv # 图像标注文件
├── __init__.py # 包初始化文件
├── __about__.py # 项目元信息
└── utils.py # 数据加载工具函数
关键模块功能
- 数据存储路径:
src/elpv_dataset/data/ - 图像加载工具:
load_dataset()函数 - 标注文件格式:CSV格式,包含图像路径、缺陷概率和电池类型
📄 学术引用规范
如果在研究中使用该数据集,请按照以下格式引用:
@InProceedings{Buerhop2018,
author = {Buerhop-Lutz, Claudia and Deitsch, Sergiu and Maier, Andreas and Gallwitz, Florian and Berger, Stephan and Doll, Bernd and Hauch, Jens and Camus, Christian and Brabec, Christoph J.},
title = {A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery},
booktitle = {European PV Solar Energy Conference and Exhibition (EU PVSEC)},
year = {2018},
doi = {10.4229/35thEUPVSEC20182018-5CV.3.15},
}
🔍 数据集获取方式
完整仓库克隆
git clone https://gitcode.com/gh_mirrors/el/elpv-dataset
ELPV-Dataset为光伏行业从业者和机器学习爱好者提供了高质量的标注数据和便捷的使用体验,通过本数据集可以快速构建太阳能电池缺陷检测模型,推动光伏产业的智能化发展。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178