AIbrix项目中HTTPS端点自动扩展失败问题分析与解决方案
2025-06-23 14:33:07作者:曹令琨Iris
问题背景
在AIbrix项目的Pod自动扩展功能实现过程中,开发团队发现了一个关键性问题:当配置为从HTTPS端点获取指标数据时,自动扩展器无法正常工作。这个问题在Kubernetes环境中尤为突出,特别是在使用metrics-server这类核心组件时。
问题现象
当用户尝试配置PodAutoscaler资源对象,指定从HTTPS端点获取指标数据时,系统会报错并无法完成自动扩展操作。错误信息显示为证书验证失败,具体表现为无法建立安全的HTTPS连接。
技术分析
1. 证书验证问题
默认情况下,Go语言的HTTP客户端会严格执行TLS证书验证。在Kubernetes内部环境中,很多服务(如metrics-server)使用自签名证书,这会导致标准HTTP客户端验证失败。
2. 端口配置差异
在不同Kubernetes发行版中,metrics-server等服务使用的端口可能不同。例如:
- Docker Desktop环境默认使用10250端口
- 生产环境可能使用4443或其他自定义端口
3. 权限控制问题
metrics-server默认配置可能限制了对/metrics端点的访问,需要显式配置授权规则才能允许自动扩展器获取指标数据。
解决方案
1. 自定义HTTP客户端
在自动扩展器代码中,需要创建自定义的HTTP客户端,配置为跳过TLS证书验证:
client: &http.Client{
Transport: &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: true},
},
}
这种配置虽然降低了安全性,但在受信任的内部网络环境中是可接受的折中方案。
2. 正确的端口配置
根据实际环境配置正确的端口号:
- Docker Desktop环境:10250
- 生产环境:4443或其他自定义端口
3. metrics-server配置优化
确保metrics-server的启动参数包含以下关键配置:
- --secure-port=4443
- --cert-dir=/tmp
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
- --kubelet-use-node-status-port
- --authorization-always-allow-paths=/metrics
- --metric-resolution=15s
- --kubelet-insecure-tls
4. PodAutoscaler资源配置示例
以下是经过验证可用的资源配置示例:
apiVersion: autoscaling.aibrix.ai/v1alpha1
kind: PodAutoscaler
metadata:
name: metric-server-autoscaler
namespace: kube-system
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: metrics-server
minReplicas: 1
maxReplicas: 4
metricsSources:
- metricSourceType: "pod"
protocolType: "https"
port: "10250"
path: "/metrics"
targetMetric: "go_threads"
targetValue: "20"
scalingStrategy: "KPA"
实施建议
- 环境适配:在不同Kubernetes环境中部署时,应先确认metrics-server的实际端口和配置
- 安全考虑:虽然跳过了证书验证,但应确保该功能仅在集群内部网络中使用
- 监控配置:定期检查自动扩展器与指标服务的连接状态,确保自动扩展功能正常运行
- 版本兼容:注意不同Kubernetes版本中metrics-server的配置差异
总结
通过上述解决方案,AIbrix项目成功解决了HTTPS端点自动扩展失败的问题。这个案例也提醒我们,在开发Kubernetes相关工具时,需要充分考虑不同环境的配置差异和安全策略,确保功能的可靠性和兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355