AIbrix项目中HTTPS端点自动扩展失败问题分析与解决方案
2025-06-23 00:20:25作者:曹令琨Iris
问题背景
在AIbrix项目的Pod自动扩展功能实现过程中,开发团队发现了一个关键性问题:当配置为从HTTPS端点获取指标数据时,自动扩展器无法正常工作。这个问题在Kubernetes环境中尤为突出,特别是在使用metrics-server这类核心组件时。
问题现象
当用户尝试配置PodAutoscaler资源对象,指定从HTTPS端点获取指标数据时,系统会报错并无法完成自动扩展操作。错误信息显示为证书验证失败,具体表现为无法建立安全的HTTPS连接。
技术分析
1. 证书验证问题
默认情况下,Go语言的HTTP客户端会严格执行TLS证书验证。在Kubernetes内部环境中,很多服务(如metrics-server)使用自签名证书,这会导致标准HTTP客户端验证失败。
2. 端口配置差异
在不同Kubernetes发行版中,metrics-server等服务使用的端口可能不同。例如:
- Docker Desktop环境默认使用10250端口
- 生产环境可能使用4443或其他自定义端口
3. 权限控制问题
metrics-server默认配置可能限制了对/metrics端点的访问,需要显式配置授权规则才能允许自动扩展器获取指标数据。
解决方案
1. 自定义HTTP客户端
在自动扩展器代码中,需要创建自定义的HTTP客户端,配置为跳过TLS证书验证:
client: &http.Client{
Transport: &http.Transport{
TLSClientConfig: &tls.Config{InsecureSkipVerify: true},
},
}
这种配置虽然降低了安全性,但在受信任的内部网络环境中是可接受的折中方案。
2. 正确的端口配置
根据实际环境配置正确的端口号:
- Docker Desktop环境:10250
- 生产环境:4443或其他自定义端口
3. metrics-server配置优化
确保metrics-server的启动参数包含以下关键配置:
- --secure-port=4443
- --cert-dir=/tmp
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
- --kubelet-use-node-status-port
- --authorization-always-allow-paths=/metrics
- --metric-resolution=15s
- --kubelet-insecure-tls
4. PodAutoscaler资源配置示例
以下是经过验证可用的资源配置示例:
apiVersion: autoscaling.aibrix.ai/v1alpha1
kind: PodAutoscaler
metadata:
name: metric-server-autoscaler
namespace: kube-system
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: metrics-server
minReplicas: 1
maxReplicas: 4
metricsSources:
- metricSourceType: "pod"
protocolType: "https"
port: "10250"
path: "/metrics"
targetMetric: "go_threads"
targetValue: "20"
scalingStrategy: "KPA"
实施建议
- 环境适配:在不同Kubernetes环境中部署时,应先确认metrics-server的实际端口和配置
- 安全考虑:虽然跳过了证书验证,但应确保该功能仅在集群内部网络中使用
- 监控配置:定期检查自动扩展器与指标服务的连接状态,确保自动扩展功能正常运行
- 版本兼容:注意不同Kubernetes版本中metrics-server的配置差异
总结
通过上述解决方案,AIbrix项目成功解决了HTTPS端点自动扩展失败的问题。这个案例也提醒我们,在开发Kubernetes相关工具时,需要充分考虑不同环境的配置差异和安全策略,确保功能的可靠性和兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868