探索未知领域的利器:LinkFinder - 深度挖掘JavaScript中的隐藏链接
在网络安全领域,渗透测试和系统检查是一项挑战性的工作。今天,我们向你推介一款强大的工具——LinkFinder,它是一款Python脚本,专为发现JavaScript文件中的端点及其参数而设计。通过LinkFinder,你可以发掘网站上未公开的隐藏链接,从而开拓新的测试范围,识别潜在的系统问题。
项目简介
LinkFinder利用Jsbeautifier库将JS代码美化,然后结合一组精心构建的正则表达式进行匹配,找出四种类型的URL:
- 完整的URL(例如:
https://example.com/*) - 绝对路径或带点号的URL(例如:
/\*或../*) - 至少含一个斜线的相对路径(例如:
text/test.php) - 不含斜线的相对路径(例如:
test.php)
其结果可以以HTML或纯文本格式输出,并且@karel_origin还开发了一个Chrome扩展,使得LinkFinder的功能更加便捷。
屏幕快照
这是LinkFinder在实际操作中的截图,清晰地展示了找到的URL列表。
安装与依赖
LinkFinder支持Python 3。要安装,只需执行以下命令:
$ git clone https://github.com/GerbenJavado/LinkFinder.git
$ cd LinkFinder
$ python setup.py install
此外,你需要先安装argparse和jsbeautifier这两个Python模块,可以通过pip3来完成:
$ pip3 install -r requirements.txt
使用方法
LinkFinder提供了丰富的命令行选项供你选择。如需获取在线JS文件中找到的端点并将其结果保存到results.html:
python linkfinder.py -i https://example.com/1.js -o results.html
还可以分析整个域名下的所有JS文件:
python linkfinder.py -i https://example.com -d
或者从Burp抓包工具导出的文件中读取多个JS文件:
python linkfinder.py -i burpfile -b
具体更多用法,请参阅项目文档。
Docker 支持
为了便于跨平台使用,LinkFinder也提供Docker镜像支持。使用如下命令构建和运行:
docker build -t linkfinder
docker run --rm -v $(pwd):/linkfinder/output linkfinder -i http://example.com/1.js -o /linkfinder/output/output.html
确保指定/linkfinder/output作为输出路径,否则结果将在容器退出后丢失。
单元测试
如果你想要验证LinkFinder的功能,可使用pytest来进行单元测试:
pytest test_parser.py
结语
LinkFinder是作者首次公开发布的工具,欢迎任何形式的贡献。该项目遵循MIT许可协议,并得到了@jackhcable的反馈以及@edoverflow的帮助,使其变得更加优秀和易用。如果你在网络安全领域寻找新的突破,LinkFinder无疑是你不可或缺的武器。
现在就加入LinkFinder的世界,探索那些隐秘在JavaScript深处的秘密吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00