Large Concept Model项目多GPU训练方案解析
2025-07-04 19:39:39作者:邓越浪Henry
在深度学习模型训练过程中,资源调度和分布式训练是常见的技术挑战。本文将以Large Concept Model(LCM)项目为例,深入分析如何在没有Slurm集群管理系统的环境下实现多GPU训练。
分布式训练背景
传统的大规模模型训练通常依赖于Slurm等集群管理系统,但在实际开发中,研究人员可能面临以下情况:
- 本地开发环境不具备Slurm集群
- 需要使用临时GPU资源进行快速实验
- 需要更灵活的资源配置
解决方案详解
针对LCM项目的训练需求,我们可以采用PyTorch原生的分布式训练工具torchrun来实现多GPU训练。以下是具体实现方案:
CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc-per-node=2 \
-m lcm.train \
launcher=standalone \
+pretrain=mse \
++trainer.output_dir="checkpoints/mse_lcm" \
++trainer.experiment_name=training_mse_lcm \
+trainer.use_submitit=false \
参数解析
- CUDA_VISIBLE_DEVICES:指定使用的GPU设备编号
- torchrun参数:
--standalone:表示单机独立运行模式--nnodes=1:指定节点数为1--nproc-per-node=2:每个节点使用2个进程(对应2块GPU)
- 训练参数:
launcher=standalone:使用独立启动模式+pretrain=mse:指定使用MSE预训练方式- 输出目录和实验名的配置
+trainer.use_submitit=false:禁用submitit工具
技术原理
这种方案利用了PyTorch的分布式训练框架,通过torchrun启动器实现了:
- 多进程并行训练
- 自动的数据并行处理
- 梯度同步和参数更新协调
相比Slurm方案,这种本地多GPU训练方式更适合:
- 快速原型验证
- 小规模实验
- 开发环境调试
注意事项
- 确保所有指定GPU设备可用且内存充足
- 根据实际GPU数量调整nproc-per-node参数
- 批量大小等超参数可能需要相应调整
- 监控GPU利用率以确保资源被充分利用
扩展应用
此方案不仅适用于LCM项目,也可应用于其他基于PyTorch的大模型训练场景。通过调整torchrun参数,还可以实现:
- 多机多卡训练
- 混合精度训练
- 自定义分布式策略
对于更复杂的训练需求,建议结合PyTorch Lightning等高级框架进行进一步优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350