NVIDIA Omniverse Orbit项目中IsaacSim与IsaacLab的模型部署兼容性问题分析
问题背景
在机器人强化学习领域,NVIDIA Omniverse Orbit项目(包含IsaacSim和IsaacLab)为研究人员提供了强大的仿真和训练环境。然而,近期有用户反馈在使用IsaacLab 2.1.0训练获得的policy.pt模型文件无法在IsaacSim 4.5.0环境中正常部署的问题。
问题现象
当用户尝试将在IsaacLab环境中通过强化学习训练得到的策略模型(policy.pt)部署到IsaacSim环境时,系统报错提示"PytorchStreamReader failed locating file constants.pkl: file not found"。这一问题在使用rsl_rl和skrl两种强化学习库时都曾出现,但表现略有不同。
技术分析
经过深入调查,我们发现这一问题的核心在于模型导出格式的兼容性:
-
TorchScript支持差异:目前只有rsl_rl库能够正确导出包含constants.pkl文件的TorchScript格式模型,这是IsaacSim运行时所必需的。而skrl库导出的模型文件缺少这一关键组件。
-
版本兼容性:虽然用户确认了PyTorch版本在IsaacSim和IsaacLab环境中一致,但模型导出过程中的序列化方式存在差异。
-
错误日志分析:从详细的错误日志可以看到,问题发生在torch.jit._serialization模块尝试加载模型时,系统无法定位到constants.pkl文件,导致模型加载失败。
解决方案
针对这一问题,我们建议采取以下解决方案:
-
统一使用rsl_rl库:目前确认rsl_rl库能够正确导出包含所有必要组件的TorchScript模型,建议在需要IsaacSim部署的场景下优先使用该库。
-
模型导出流程:使用rsl_rl时,应通过play.py脚本导出模型,该脚本会生成两个关键文件:
- TorchScript格式的模型文件
- 环境配置文件(env.yaml)
-
加载方式:在IsaacSim中,应使用self.load_policy方法加载这些导出的文件。
技术建议
对于需要在不同环境间迁移模型的研究人员,我们提供以下建议:
-
模型导出验证:在导出模型后,建议先在小规模环境中验证模型的可用性。
-
环境一致性:尽量保持训练环境和部署环境的主要组件版本一致,包括但不限于:
- PyTorch版本
- CUDA版本
- 相关依赖库版本
-
备选方案:如果必须使用skrl等库,可以考虑在IsaacLab环境中完成整个评估流程,避免跨环境部署带来的兼容性问题。
未来展望
随着Omniverse生态系统的不断发展,我们预期未来版本将提供更统一的模型导出和部署机制,减少此类兼容性问题。同时,也建议开发者社区关注不同强化学习库对TorchScript导出的支持情况,选择最适合自己工作流程的工具链。
通过以上分析和建议,希望能够帮助研究人员更顺利地在IsaacLab和IsaacSim环境间迁移强化学习模型,推动机器人学习研究的进展。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









