NVIDIA Omniverse Orbit项目中IsaacSim与IsaacLab的模型部署兼容性问题分析
问题背景
在机器人强化学习领域,NVIDIA Omniverse Orbit项目(包含IsaacSim和IsaacLab)为研究人员提供了强大的仿真和训练环境。然而,近期有用户反馈在使用IsaacLab 2.1.0训练获得的policy.pt模型文件无法在IsaacSim 4.5.0环境中正常部署的问题。
问题现象
当用户尝试将在IsaacLab环境中通过强化学习训练得到的策略模型(policy.pt)部署到IsaacSim环境时,系统报错提示"PytorchStreamReader failed locating file constants.pkl: file not found"。这一问题在使用rsl_rl和skrl两种强化学习库时都曾出现,但表现略有不同。
技术分析
经过深入调查,我们发现这一问题的核心在于模型导出格式的兼容性:
-
TorchScript支持差异:目前只有rsl_rl库能够正确导出包含constants.pkl文件的TorchScript格式模型,这是IsaacSim运行时所必需的。而skrl库导出的模型文件缺少这一关键组件。
-
版本兼容性:虽然用户确认了PyTorch版本在IsaacSim和IsaacLab环境中一致,但模型导出过程中的序列化方式存在差异。
-
错误日志分析:从详细的错误日志可以看到,问题发生在torch.jit._serialization模块尝试加载模型时,系统无法定位到constants.pkl文件,导致模型加载失败。
解决方案
针对这一问题,我们建议采取以下解决方案:
-
统一使用rsl_rl库:目前确认rsl_rl库能够正确导出包含所有必要组件的TorchScript模型,建议在需要IsaacSim部署的场景下优先使用该库。
-
模型导出流程:使用rsl_rl时,应通过play.py脚本导出模型,该脚本会生成两个关键文件:
- TorchScript格式的模型文件
- 环境配置文件(env.yaml)
-
加载方式:在IsaacSim中,应使用self.load_policy方法加载这些导出的文件。
技术建议
对于需要在不同环境间迁移模型的研究人员,我们提供以下建议:
-
模型导出验证:在导出模型后,建议先在小规模环境中验证模型的可用性。
-
环境一致性:尽量保持训练环境和部署环境的主要组件版本一致,包括但不限于:
- PyTorch版本
- CUDA版本
- 相关依赖库版本
-
备选方案:如果必须使用skrl等库,可以考虑在IsaacLab环境中完成整个评估流程,避免跨环境部署带来的兼容性问题。
未来展望
随着Omniverse生态系统的不断发展,我们预期未来版本将提供更统一的模型导出和部署机制,减少此类兼容性问题。同时,也建议开发者社区关注不同强化学习库对TorchScript导出的支持情况,选择最适合自己工作流程的工具链。
通过以上分析和建议,希望能够帮助研究人员更顺利地在IsaacLab和IsaacSim环境间迁移强化学习模型,推动机器人学习研究的进展。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00