OCR_Kor 项目安装与配置指南
2025-04-21 17:14:36作者:劳婵绚Shirley
1. 项目基础介绍
OCR_Kor 是一个基于深度学习的韩文OCR(Optical Character Recognition,光学字符识别)项目。该项目旨在通过训练深度学习模型来识别和转换图像中的韩文字符。项目的主要编程语言是 Python。
2. 关键技术和框架
- 深度学习框架:使用 PyTorch 作为深度学习框架。
- 图像处理:采用多种图像处理技术,如文字区域提取、图像变形等,以增强模型的鲁棒性。
- 模型架构:结合了多种网络架构,如 TPS(Thresholding Parameterization Spatial Transformer Network)、VGG、ResNet 作为特征提取网络,BiLSTM(双向长短时记忆网络)和 Attn(注意力机制)作为序列模型。
3. 安装和配置准备工作
在开始安装之前,请确保您的计算机满足了以下先决条件:
- Python 3.6 或更高版本
- PyTorch
- CUDA(如果您打算使用GPU加速)
详细安装步骤
步骤 1:克隆项目
首先,您需要在本地克隆 GitHub 上的 OCR_Kor 仓库:
git clone https://github.com/parksunwoo/ocr_kor.git
cd ocr_kor
步骤 2:安装依赖
安装项目所需的 Python 包。建议使用虚拟环境来避免与系统中的其他 Python 包冲突:
# 创建虚拟环境(可选)
python3 -m venv venv
source venv/bin/activate # 在 Windows 下使用 `venv\Scripts\activate`
# 安装依赖
pip install -r requirements.txt
步骤 3:准备数据
项目需要韩文字符图像数据集。如果数据集不存在,您需要自己生成或下载。项目仓库中包含了生成训练数据的示例脚本:
# 生成数据集(根据实际情况修改路径和参数)
python3 data/create_lmdb_dataset.py --inputPath ./data/generator/TextRecognitionDataGenerator/ --gtFile ./data/gt_basic.txt --outputPath ./data/data_lmdb_release/training
步骤 4:训练模型
在准备好数据之后,您可以开始训练模型:
# 训练模型(根据您的硬件配置修改 CUDA_VISIBLE_DEVICES)
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/train.py --train_data ./data/data_lmdb_release/training --valid_data ./data/data_lmdb_release/validation --select_data basic-skew --batch_ratio 0.5-0.5 --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction Attn --data_filtering_off --batch_max_length 50 --workers 4
步骤 5:测试模型
训练完成后,您可以使用以下命令来测试模型的性能:
# 测试模型
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/test.py --eval_data ./data/data_lmdb_release/evaluation --benchmark_all_eval --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction Attn --saved_model ./saved_models/TPS-VGG-None-Attn-Seed1111/best_accuracy.pth --data_filtering_off --workers 4
步骤 6:使用模型进行预测
最后,您可以使用训练好的模型对新的图像进行预测:
# 使用模型进行预测
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/demo.py --Transformation TPS --FeatureExtraction VGG --SequenceModeling BiLSTM --Prediction Attn --image_folder ./data/demo_image/ --saved_model ./deep-text-recognition-benchmark/saved_models/TPS-VGG-BiLSTM-Attn-Seed9998/best_accuracy.pth
请根据实际情况调整上述命令中的参数。上述步骤为您提供了一个基本的安装和配置指南,具体细节可能需要根据项目文档和您计算机的配置进行调整。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217