OCR_Kor 项目安装与配置指南
2025-04-21 04:53:45作者:劳婵绚Shirley
1. 项目基础介绍
OCR_Kor 是一个基于深度学习的韩文OCR(Optical Character Recognition,光学字符识别)项目。该项目旨在通过训练深度学习模型来识别和转换图像中的韩文字符。项目的主要编程语言是 Python。
2. 关键技术和框架
- 深度学习框架:使用 PyTorch 作为深度学习框架。
- 图像处理:采用多种图像处理技术,如文字区域提取、图像变形等,以增强模型的鲁棒性。
- 模型架构:结合了多种网络架构,如 TPS(Thresholding Parameterization Spatial Transformer Network)、VGG、ResNet 作为特征提取网络,BiLSTM(双向长短时记忆网络)和 Attn(注意力机制)作为序列模型。
3. 安装和配置准备工作
在开始安装之前,请确保您的计算机满足了以下先决条件:
- Python 3.6 或更高版本
- PyTorch
- CUDA(如果您打算使用GPU加速)
详细安装步骤
步骤 1:克隆项目
首先,您需要在本地克隆 GitHub 上的 OCR_Kor 仓库:
git clone https://github.com/parksunwoo/ocr_kor.git
cd ocr_kor
步骤 2:安装依赖
安装项目所需的 Python 包。建议使用虚拟环境来避免与系统中的其他 Python 包冲突:
# 创建虚拟环境(可选)
python3 -m venv venv
source venv/bin/activate # 在 Windows 下使用 `venv\Scripts\activate`
# 安装依赖
pip install -r requirements.txt
步骤 3:准备数据
项目需要韩文字符图像数据集。如果数据集不存在,您需要自己生成或下载。项目仓库中包含了生成训练数据的示例脚本:
# 生成数据集(根据实际情况修改路径和参数)
python3 data/create_lmdb_dataset.py --inputPath ./data/generator/TextRecognitionDataGenerator/ --gtFile ./data/gt_basic.txt --outputPath ./data/data_lmdb_release/training
步骤 4:训练模型
在准备好数据之后,您可以开始训练模型:
# 训练模型(根据您的硬件配置修改 CUDA_VISIBLE_DEVICES)
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/train.py --train_data ./data/data_lmdb_release/training --valid_data ./data/data_lmdb_release/validation --select_data basic-skew --batch_ratio 0.5-0.5 --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction Attn --data_filtering_off --batch_max_length 50 --workers 4
步骤 5:测试模型
训练完成后,您可以使用以下命令来测试模型的性能:
# 测试模型
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/test.py --eval_data ./data/data_lmdb_release/evaluation --benchmark_all_eval --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction Attn --saved_model ./saved_models/TPS-VGG-None-Attn-Seed1111/best_accuracy.pth --data_filtering_off --workers 4
步骤 6:使用模型进行预测
最后,您可以使用训练好的模型对新的图像进行预测:
# 使用模型进行预测
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/demo.py --Transformation TPS --FeatureExtraction VGG --SequenceModeling BiLSTM --Prediction Attn --image_folder ./data/demo_image/ --saved_model ./deep-text-recognition-benchmark/saved_models/TPS-VGG-BiLSTM-Attn-Seed9998/best_accuracy.pth
请根据实际情况调整上述命令中的参数。上述步骤为您提供了一个基本的安装和配置指南,具体细节可能需要根据项目文档和您计算机的配置进行调整。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
463
3.45 K
Ascend Extension for PyTorch
Python
270
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
187
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692