Trading-Gym 项目启动与配置教程
2025-04-28 10:02:44作者:郁楠烈Hubert
1. 项目目录结构及介绍
在克隆或下载 Trading-Gym 项目后,您会看到以下目录结构:
trading-gym/
├── environments/ # 环境相关的代码和配置
├── gym/ # gym接口的实现
├── models/ # 模型代码,用于训练和预测
├── notebooks/ # Jupyter笔记本,用于实验和数据分析
├── tests/ # 测试代码
├── examples/ # 使用示例
├── requirements.txt # 项目依赖的Python包
├── setup.py # 项目设置文件
└── README.md # 项目说明文件
- environments/: 包含创建交易环境所需的代码和配置。
- gym/: 实现了机器学习训练接口,使得Trading-Gym环境可以与各种机器学习库兼容。
- models/: 存储用于训练和预测的模型代码。
- notebooks/: 包含了用于实验和数据分析的Jupyter笔记本。
- tests/: 存储项目的测试代码,用于确保代码的质量和稳定性。
- examples/: 提供了如何使用Trading-Gym的示例代码。
- requirements.txt: 列出了项目运行所依赖的Python包。
- setup.py: 用于配置项目的Python模块。
- README.md: 包含了项目的基本信息和说明。
2. 项目的启动文件介绍
在项目的根目录下,并没有一个明确的"启动文件"。通常,您会通过运行一个脚本或Jupyter笔记本来开始使用这个项目。
例如,您可以在 examples/ 目录中选择一个示例脚本来运行:
python examples/simple_trading_example.py
或者,如果您想使用Jupyter笔记本,可以启动Jupyter环境并打开 notebooks/ 目录中的一个笔记本。
3. 项目的配置文件介绍
Trading-Gym项目的配置主要通过代码中的参数设置进行。然而,您可能会在 environments/ 目录中找到一些配置文件,这些文件用于设置不同的交易环境。
例如,environments/config.json 可能包含以下内容:
{
"data_source": "csv",
"data_path": "./data",
"start_date": "2010-01-01",
"end_date": "2020-01-01",
"lookback": 252,
"budget": 1000000.0,
"transaction_cost": 0.001
}
这个配置文件定义了数据源、数据路径、交易开始和结束日期、回溯周期、初始资金和交易成本等参数。您可以根据自己的需求修改这些参数。
要使用这个配置文件,您需要在创建环境或模型时加载它:
import json
with open('config.json', 'r') as config_file:
config = json.load(config_file)
# 使用加载的配置创建环境或模型
确保在运行任何示例或模型之前,您的系统中已安装了所有在 requirements.txt 文件中列出的依赖项。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C074
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
268
305
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
74
React Native鸿蒙化仓库
JavaScript
283
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
419
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
453
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119