BallonsTranslator项目运行时报错"GET was unable to find an engine to execute this computation"的解决方案
2025-06-20 13:56:06作者:秋阔奎Evelyn
问题背景
在使用BallonsTranslator项目进行漫画翻译时,部分用户可能会遇到一个棘手的运行时错误。当点击界面中的"翻译本页"或"RUN"按钮时,程序无响应,并在命令行中显示错误信息"RuntimeError: GET was unable to find an engine to execute this computation"。这个问题通常与CUDA和cuDNN的配置有关,特别是在使用NVIDIA显卡进行加速计算时。
错误原因分析
这个错误的核心在于PyTorch无法找到合适的计算引擎来执行卷积转置操作(conv_transpose2d)。经过深入分析,主要原因可能包括:
- CUDA版本与PyTorch版本不匹配
- cuDNN库文件缺失或版本不正确
- 系统环境变量配置不当
- 显卡驱动版本过旧
详细解决方案
方法一:检查并更新显卡驱动
首先确保显卡驱动是最新版本。对于NVIDIA显卡,可以通过NVIDIA控制面板或官方网站下载最新驱动。更新驱动后重启计算机。
方法二:正确配置CUDA环境
- 确认安装的CUDA版本与PyTorch版本匹配。目前PyTorch 2.2.0+cu118需要CUDA 11.8。
- 从NVIDIA官网下载对应版本的CUDA Toolkit进行安装。
- 安装完成后,确保系统环境变量中包含CUDA的bin目录路径,通常为"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin"。
方法三:补充cuDNN库文件
这是最常见且有效的解决方案:
- 从NVIDIA开发者网站下载与CUDA版本匹配的cuDNN库。
- 解压后找到以下关键文件:
- cudnn_adv_infer64_8.dll
- cudnn_adv_train64_8.dll
- cudnn_cnn_infer64_8.dll
- cudnn_cnn_train64_8.dll
- cudnn_ops_infer64_8.dll
- cudnn_ops_train64_8.dll
- 将这些文件复制到CUDA安装目录的bin文件夹下,通常路径为"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin"。
- 确保系统环境变量PATH中包含上述目录。
方法四:重新安装PyTorch
如果上述方法无效,可以尝试重新安装与CUDA版本匹配的PyTorch:
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --force-reinstall
验证解决方案
完成上述步骤后,可以通过以下方式验证问题是否解决:
- 在Python中运行以下代码检查CUDA是否可用:
import torch
print(torch.cuda.is_available()) # 应返回True
print(torch.backends.cudnn.enabled) # 应返回True
- 重新启动BallonsTranslator项目,尝试执行翻译操作,观察是否还会出现错误。
预防措施
为避免类似问题再次发生,建议:
- 定期更新显卡驱动
- 在安装PyTorch时明确指定CUDA版本
- 保持CUDA、cuDNN和PyTorch版本的兼容性
- 在项目文档中记录所使用的环境配置
总结
"GET was unable to find an engine to execute this computation"错误通常是由于CUDA/cuDNN配置不当导致的。通过正确安装匹配版本的CUDA Toolkit、补充必要的cuDNN库文件以及验证PyTorch的CUDA支持,可以有效解决这个问题。对于BallonsTranslator这类依赖GPU加速的项目,确保计算环境的正确配置是保证其正常运行的关键。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
263
295
暂无简介
Dart
708
168
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
836
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
686
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
411
130