BallonsTranslator项目运行时报错"GET was unable to find an engine to execute this computation"的解决方案
2025-06-20 17:31:18作者:秋阔奎Evelyn
问题背景
在使用BallonsTranslator项目进行漫画翻译时,部分用户可能会遇到一个棘手的运行时错误。当点击界面中的"翻译本页"或"RUN"按钮时,程序无响应,并在命令行中显示错误信息"RuntimeError: GET was unable to find an engine to execute this computation"。这个问题通常与CUDA和cuDNN的配置有关,特别是在使用NVIDIA显卡进行加速计算时。
错误原因分析
这个错误的核心在于PyTorch无法找到合适的计算引擎来执行卷积转置操作(conv_transpose2d)。经过深入分析,主要原因可能包括:
- CUDA版本与PyTorch版本不匹配
 - cuDNN库文件缺失或版本不正确
 - 系统环境变量配置不当
 - 显卡驱动版本过旧
 
详细解决方案
方法一:检查并更新显卡驱动
首先确保显卡驱动是最新版本。对于NVIDIA显卡,可以通过NVIDIA控制面板或官方网站下载最新驱动。更新驱动后重启计算机。
方法二:正确配置CUDA环境
- 确认安装的CUDA版本与PyTorch版本匹配。目前PyTorch 2.2.0+cu118需要CUDA 11.8。
 - 从NVIDIA官网下载对应版本的CUDA Toolkit进行安装。
 - 安装完成后,确保系统环境变量中包含CUDA的bin目录路径,通常为"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin"。
 
方法三:补充cuDNN库文件
这是最常见且有效的解决方案:
- 从NVIDIA开发者网站下载与CUDA版本匹配的cuDNN库。
 - 解压后找到以下关键文件:
- cudnn_adv_infer64_8.dll
 - cudnn_adv_train64_8.dll
 - cudnn_cnn_infer64_8.dll
 - cudnn_cnn_train64_8.dll
 - cudnn_ops_infer64_8.dll
 - cudnn_ops_train64_8.dll
 
 - 将这些文件复制到CUDA安装目录的bin文件夹下,通常路径为"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin"。
 - 确保系统环境变量PATH中包含上述目录。
 
方法四:重新安装PyTorch
如果上述方法无效,可以尝试重新安装与CUDA版本匹配的PyTorch:
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --force-reinstall
验证解决方案
完成上述步骤后,可以通过以下方式验证问题是否解决:
- 在Python中运行以下代码检查CUDA是否可用:
 
import torch
print(torch.cuda.is_available())  # 应返回True
print(torch.backends.cudnn.enabled)  # 应返回True
- 重新启动BallonsTranslator项目,尝试执行翻译操作,观察是否还会出现错误。
 
预防措施
为避免类似问题再次发生,建议:
- 定期更新显卡驱动
 - 在安装PyTorch时明确指定CUDA版本
 - 保持CUDA、cuDNN和PyTorch版本的兼容性
 - 在项目文档中记录所使用的环境配置
 
总结
"GET was unable to find an engine to execute this computation"错误通常是由于CUDA/cuDNN配置不当导致的。通过正确安装匹配版本的CUDA Toolkit、补充必要的cuDNN库文件以及验证PyTorch的CUDA支持,可以有效解决这个问题。对于BallonsTranslator这类依赖GPU加速的项目,确保计算环境的正确配置是保证其正常运行的关键。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445