BallonsTranslator项目运行时报错"GET was unable to find an engine to execute this computation"的解决方案
2025-06-20 04:45:13作者:秋阔奎Evelyn
问题背景
在使用BallonsTranslator项目进行漫画翻译时,部分用户可能会遇到一个棘手的运行时错误。当点击界面中的"翻译本页"或"RUN"按钮时,程序无响应,并在命令行中显示错误信息"RuntimeError: GET was unable to find an engine to execute this computation"。这个问题通常与CUDA和cuDNN的配置有关,特别是在使用NVIDIA显卡进行加速计算时。
错误原因分析
这个错误的核心在于PyTorch无法找到合适的计算引擎来执行卷积转置操作(conv_transpose2d)。经过深入分析,主要原因可能包括:
- CUDA版本与PyTorch版本不匹配
- cuDNN库文件缺失或版本不正确
- 系统环境变量配置不当
- 显卡驱动版本过旧
详细解决方案
方法一:检查并更新显卡驱动
首先确保显卡驱动是最新版本。对于NVIDIA显卡,可以通过NVIDIA控制面板或官方网站下载最新驱动。更新驱动后重启计算机。
方法二:正确配置CUDA环境
- 确认安装的CUDA版本与PyTorch版本匹配。目前PyTorch 2.2.0+cu118需要CUDA 11.8。
- 从NVIDIA官网下载对应版本的CUDA Toolkit进行安装。
- 安装完成后,确保系统环境变量中包含CUDA的bin目录路径,通常为"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin"。
方法三:补充cuDNN库文件
这是最常见且有效的解决方案:
- 从NVIDIA开发者网站下载与CUDA版本匹配的cuDNN库。
- 解压后找到以下关键文件:
- cudnn_adv_infer64_8.dll
- cudnn_adv_train64_8.dll
- cudnn_cnn_infer64_8.dll
- cudnn_cnn_train64_8.dll
- cudnn_ops_infer64_8.dll
- cudnn_ops_train64_8.dll
- 将这些文件复制到CUDA安装目录的bin文件夹下,通常路径为"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin"。
- 确保系统环境变量PATH中包含上述目录。
方法四:重新安装PyTorch
如果上述方法无效,可以尝试重新安装与CUDA版本匹配的PyTorch:
python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --force-reinstall
验证解决方案
完成上述步骤后,可以通过以下方式验证问题是否解决:
- 在Python中运行以下代码检查CUDA是否可用:
import torch
print(torch.cuda.is_available()) # 应返回True
print(torch.backends.cudnn.enabled) # 应返回True
- 重新启动BallonsTranslator项目,尝试执行翻译操作,观察是否还会出现错误。
预防措施
为避免类似问题再次发生,建议:
- 定期更新显卡驱动
- 在安装PyTorch时明确指定CUDA版本
- 保持CUDA、cuDNN和PyTorch版本的兼容性
- 在项目文档中记录所使用的环境配置
总结
"GET was unable to find an engine to execute this computation"错误通常是由于CUDA/cuDNN配置不当导致的。通过正确安装匹配版本的CUDA Toolkit、补充必要的cuDNN库文件以及验证PyTorch的CUDA支持,可以有效解决这个问题。对于BallonsTranslator这类依赖GPU加速的项目,确保计算环境的正确配置是保证其正常运行的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1