在Amp项目中实现异步测试的上下文跟踪
2025-06-14 23:38:48作者:卓炯娓
背景介绍
在现代PHP开发中,异步编程变得越来越重要。Amp作为一个流行的PHP异步编程框架,提供了强大的协程和Future支持。在编写异步集成测试时,我们经常需要处理多个并发测试用例的执行,同时还需要跟踪每个测试的状态和断言数量。
问题场景
假设我们有以下测试用例:
class MyTest {
public function test1() {
$result = $this->request('/delay/3'); // 使用Amp HTTP客户端
$this->assertTrue($result['foo']);
}
public function test2() {
$result = $this->request('/delay/1'); // 使用Amp HTTP客户端
$this->assertTrue($result['foo']);
}
}
传统同步执行方式需要4秒(3+1),而利用Amp的异步特性,我们可以让这两个测试并发执行,总时间只需3秒。然而,在并发执行时,如何正确跟踪每个测试的断言数量成为一个挑战。
解决方案探索
初始实现
最初的实现使用了一个测试池(Pool)来管理并发测试:
while (!$pool->isEmpty()) {
$test = $pool->getTestToRun();
$futures[$test->getIdentifier()] = async(function () use ($test, &$futures) {
$this->run($test);
unset($futures[$test->getIdentifier()]);
});
}
上下文跟踪问题
当测试中遇到I/O操作时,Amp会暂停当前协程并切换到其他协程。这导致在跟踪断言数量时,上下文可能会混淆。例如,test1暂停后执行test2时,test2的断言可能会被错误地计入test1。
FiberLocal解决方案
Amp基于协程(Fiber)实现异步操作。我们可以利用FiberLocal来为每个协程维护独立的上下文数据。FiberLocal类似于线程本地存储,但针对协程进行了优化。
实现方式如下:
$fiberLocal = new FiberLocal(function() {
return ['assertionCount' => 0];
});
// 在测试中
$fiberLocal->get()['assertionCount']++;
这种方法确保了每个测试协程都有自己的断言计数器,不会互相干扰。
高级考量
嵌套协程处理
如果测试中创建了嵌套协程,FiberLocal的默认行为可能无法满足需求,因为子协程不会自动继承父协程的上下文。这时可以手动传递上下文:
$parentContext = $fiberLocal->get();
async(function() use ($fiberLocal, $parentContext) {
$fiberLocal->set($parentContext);
// 子协程逻辑
});
性能影响
虽然FiberLocal提供了便利,但频繁的上下文切换和存储访问可能带来性能开销。在性能敏感的场景中,应该尽量减少上下文数据的体积和访问频率。
最佳实践
- 为每个测试协程创建独立的上下文存储
- 在断言方法中自动更新上下文计数器
- 处理嵌套协程时显式传递上下文
- 在测试结束时收集和验证上下文数据
总结
通过利用Amp的FiberLocal特性,我们可以有效地解决异步测试中的上下文跟踪问题。这种方法不仅适用于断言计数,还可以扩展到其他需要在协程间隔离的状态管理场景。理解并合理应用这些模式,可以显著提升异步测试的可靠性和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492