Apollo Client中MockedResponse类型变更的技术解析
背景介绍
在Apollo Client 3.9版本中,MockedResponse类型经历了一次重要的变更,这次变更旨在支持动态匹配mock的功能。然而,这一变更也带来了类型系统上的一些挑战,特别是当开发者尝试将特定类型的MockedResponse传递给接受通用MockedResponse数组的函数时。
类型变更详情
在3.9版本之前,MockedResponse的类型定义相对简单:
export type ResultFunction<T> = () => T;
而在3.9版本中,为了支持动态变量匹配,类型定义被修改为:
export type ResultFunction<T, V = Record<string, any>> = (variables: V) => T;
这一变更使得MockedResponse接口也相应发生了变化:
export interface MockedResponse<TData = Record<string, any>, TVariables = Record<string, any>> {
request: GraphQLRequest<TVariables>;
result?: FetchResult<TData> | ResultFunction<FetchResult<TData>, TVariables>;
}
类型系统挑战
这一变更引入了一个类型系统上的挑战:当开发者尝试将一个特定类型的MockedResponse传递给接受通用MockedResponse数组的函数时,TypeScript会报错。这是因为TVariables现在被用在了一个逆变(contravariant)的位置上,这强制了泛型参数的变型规则。
具体来说,当开发者定义:
const response: MockedResponse<MyDocument, MyVariables> = {...}
然后尝试将其传递给:
function createMockLink(mocks: MockedResponse[]) {...}
TypeScript会报错,指出类型不兼容。这是因为TypeScript无法确定我们只会使用构造时提供的类型安全的变量来调用函数。
临时解决方案
在官方修复之前,开发者可以采用以下临时解决方案:
- 显式使用any类型:
const mocks: MockedResponse<any, any>[] = [...];
- 创建辅助类型减少any的使用范围:
type MockedResponseArray = ReadonlyArray<MockedResponse<Record<string, any>, any>>;
官方修复方案
Apollo Client团队提出了一个修复方案,通过调整类型定义来解决这个问题:
interface MockedResponse<TData extends Record<string, any> = any, TVariables extends Record<string, any> = any> {
request: GraphQLRequest<TVariables>;
result?: FetchResult<TData> | ResultFunction<FetchResult<TData>, TVariables>;
variableMatcher?: VariableMatcher<TVariables>;
newData?: ResultFunction<FetchResult<TData>, TVariables>;
}
这一修改既保留了类型安全性,又恢复了将特定类型MockedResponse传递给通用MockedResponse数组的能力。
最佳实践建议
- 当升级到Apollo Client 3.9或更高版本时,注意检查所有MockedResponse相关的类型定义
- 考虑使用辅助类型来集中处理any类型的使用
- 及时更新到包含修复的版本,以获得更好的类型体验
总结
Apollo Client 3.9中对MockedResponse类型的变更是为了支持更强大的动态mock匹配功能,虽然带来了短期的类型系统挑战,但通过团队和社区的共同努力,这一问题已经得到了妥善解决。理解这些类型变更背后的原理,有助于开发者更好地利用Apollo Client的mock功能进行测试。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00