Apollo Client中MockedResponse类型变更的技术解析
背景介绍
在Apollo Client 3.9版本中,MockedResponse类型经历了一次重要的变更,这次变更旨在支持动态匹配mock的功能。然而,这一变更也带来了类型系统上的一些挑战,特别是当开发者尝试将特定类型的MockedResponse传递给接受通用MockedResponse数组的函数时。
类型变更详情
在3.9版本之前,MockedResponse的类型定义相对简单:
export type ResultFunction<T> = () => T;
而在3.9版本中,为了支持动态变量匹配,类型定义被修改为:
export type ResultFunction<T, V = Record<string, any>> = (variables: V) => T;
这一变更使得MockedResponse接口也相应发生了变化:
export interface MockedResponse<TData = Record<string, any>, TVariables = Record<string, any>> {
request: GraphQLRequest<TVariables>;
result?: FetchResult<TData> | ResultFunction<FetchResult<TData>, TVariables>;
}
类型系统挑战
这一变更引入了一个类型系统上的挑战:当开发者尝试将一个特定类型的MockedResponse传递给接受通用MockedResponse数组的函数时,TypeScript会报错。这是因为TVariables现在被用在了一个逆变(contravariant)的位置上,这强制了泛型参数的变型规则。
具体来说,当开发者定义:
const response: MockedResponse<MyDocument, MyVariables> = {...}
然后尝试将其传递给:
function createMockLink(mocks: MockedResponse[]) {...}
TypeScript会报错,指出类型不兼容。这是因为TypeScript无法确定我们只会使用构造时提供的类型安全的变量来调用函数。
临时解决方案
在官方修复之前,开发者可以采用以下临时解决方案:
- 显式使用any类型:
const mocks: MockedResponse<any, any>[] = [...];
- 创建辅助类型减少any的使用范围:
type MockedResponseArray = ReadonlyArray<MockedResponse<Record<string, any>, any>>;
官方修复方案
Apollo Client团队提出了一个修复方案,通过调整类型定义来解决这个问题:
interface MockedResponse<TData extends Record<string, any> = any, TVariables extends Record<string, any> = any> {
request: GraphQLRequest<TVariables>;
result?: FetchResult<TData> | ResultFunction<FetchResult<TData>, TVariables>;
variableMatcher?: VariableMatcher<TVariables>;
newData?: ResultFunction<FetchResult<TData>, TVariables>;
}
这一修改既保留了类型安全性,又恢复了将特定类型MockedResponse传递给通用MockedResponse数组的能力。
最佳实践建议
- 当升级到Apollo Client 3.9或更高版本时,注意检查所有MockedResponse相关的类型定义
- 考虑使用辅助类型来集中处理any类型的使用
- 及时更新到包含修复的版本,以获得更好的类型体验
总结
Apollo Client 3.9中对MockedResponse类型的变更是为了支持更强大的动态mock匹配功能,虽然带来了短期的类型系统挑战,但通过团队和社区的共同努力,这一问题已经得到了妥善解决。理解这些类型变更背后的原理,有助于开发者更好地利用Apollo Client的mock功能进行测试。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00