YOLOv5 非正方形图像训练与模型导出技术解析
2025-05-01 22:53:34作者:裘晴惠Vivianne
非正方形图像训练的技术实现
在计算机视觉领域,YOLOv5作为一款优秀的实时目标检测框架,其训练过程通常默认使用正方形输入图像。然而在实际应用中,我们经常会遇到非正方形比例(如1280×720)的图像数据。针对这类特殊比例数据的训练,YOLOv5提供了专门的解决方案。
训练非正方形图像时,关键在于正确处理图像的长宽比。YOLOv5通过--img-size和--rect两个参数的配合使用实现这一功能。--img-size参数指定图像的最长边尺寸,系统会自动按比例调整短边尺寸,保持原始图像的长宽比不变。而--rect参数则确保训练过程中使用矩形训练批次,避免不必要的图像填充。
典型训练命令如下:
python3 segment/train.py --img-size 1280 --rect --epochs 20 --data custom_dataset.yaml --weights yolov5s-seg.pt --cfg models/segment/yolov5s-seg.yaml
模型导出与推理的技术考量
训练完成后,将PyTorch模型导出为ONNX格式时,需要特别注意输入尺寸的处理。虽然训练时使用了--rect参数,但在导出阶段,该参数并不适用。导出过程主要通过--img-size参数控制输出模型的输入尺寸。
正确的导出命令应为:
python3 export.py --weights best.pt --img-size 1280 --include onnx --data custom_dataset.yaml
实际应用中的关键问题
-
输入尺寸一致性:导出的ONNX模型会固定输入尺寸,推理时需要确保输入图像与训练时保持相同的长宽比处理方式
-
动态形状支持:标准导出流程不支持动态输入尺寸,如需此功能,需对ONNX模型进行额外处理或使用特定推理框架的高级功能
-
推理预处理:在实际部署时,特别是使用TensorRT等框架时,需要实现与训练时相同的图像预处理逻辑,包括保持长宽比的resize操作
技术建议与最佳实践
对于需要在边缘设备(如Jetson系列)部署的场景,建议:
- 保持训练和推理阶段使用相同的图像预处理流程
- 对于固定场景应用,推荐使用固定输入尺寸以获得最佳性能
- 考虑使用TensorRT的优化功能时,需要特别注意其对动态形状的支持情况
- 在资源受限设备上,可适当降低输入分辨率以提升推理速度,但需同步调整训练配置
通过合理配置YOLOv5的训练和导出参数,开发者可以有效地处理非正方形图像数据,并在各种硬件平台上实现高效的目标检测应用。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
604
181
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57