YOLOv5 非正方形图像训练与模型导出技术解析
2025-05-01 17:19:44作者:裘晴惠Vivianne
非正方形图像训练的技术实现
在计算机视觉领域,YOLOv5作为一款优秀的实时目标检测框架,其训练过程通常默认使用正方形输入图像。然而在实际应用中,我们经常会遇到非正方形比例(如1280×720)的图像数据。针对这类特殊比例数据的训练,YOLOv5提供了专门的解决方案。
训练非正方形图像时,关键在于正确处理图像的长宽比。YOLOv5通过--img-size和--rect两个参数的配合使用实现这一功能。--img-size参数指定图像的最长边尺寸,系统会自动按比例调整短边尺寸,保持原始图像的长宽比不变。而--rect参数则确保训练过程中使用矩形训练批次,避免不必要的图像填充。
典型训练命令如下:
python3 segment/train.py --img-size 1280 --rect --epochs 20 --data custom_dataset.yaml --weights yolov5s-seg.pt --cfg models/segment/yolov5s-seg.yaml
模型导出与推理的技术考量
训练完成后,将PyTorch模型导出为ONNX格式时,需要特别注意输入尺寸的处理。虽然训练时使用了--rect参数,但在导出阶段,该参数并不适用。导出过程主要通过--img-size参数控制输出模型的输入尺寸。
正确的导出命令应为:
python3 export.py --weights best.pt --img-size 1280 --include onnx --data custom_dataset.yaml
实际应用中的关键问题
-
输入尺寸一致性:导出的ONNX模型会固定输入尺寸,推理时需要确保输入图像与训练时保持相同的长宽比处理方式
-
动态形状支持:标准导出流程不支持动态输入尺寸,如需此功能,需对ONNX模型进行额外处理或使用特定推理框架的高级功能
-
推理预处理:在实际部署时,特别是使用TensorRT等框架时,需要实现与训练时相同的图像预处理逻辑,包括保持长宽比的resize操作
技术建议与最佳实践
对于需要在边缘设备(如Jetson系列)部署的场景,建议:
- 保持训练和推理阶段使用相同的图像预处理流程
- 对于固定场景应用,推荐使用固定输入尺寸以获得最佳性能
- 考虑使用TensorRT的优化功能时,需要特别注意其对动态形状的支持情况
- 在资源受限设备上,可适当降低输入分辨率以提升推理速度,但需同步调整训练配置
通过合理配置YOLOv5的训练和导出参数,开发者可以有效地处理非正方形图像数据,并在各种硬件平台上实现高效的目标检测应用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493