Cleo项目自托管部署指南:从零开始搭建你的AI助手
2025-06-07 05:50:46作者:羿妍玫Ivan
前言
Cleo是一款功能强大的AI助手系统,支持自托管部署,让用户能够在私有环境中运行AI服务。本文将详细介绍如何在本地环境中部署Cleo,包括Docker和Pip两种安装方式,以及后续的配置和使用方法。
为什么选择自托管Cleo?
自托管Cleo具有以下显著优势:
- 数据隐私保护:所有数据都保留在您的私有网络中,甚至可以完全离线运行
 - 高度可定制:从AI模型选择到功能配置,您可以根据需求自由调整
 - 性能优化:可以根据硬件条件优化运行效率,特别是GPU加速
 
部署准备
在开始部署前,请确保您的系统满足以下基本要求:
- 操作系统:支持macOS、Windows(WSL2)和Linux
 - 内存:至少8GB,推荐16GB以上
 - 存储空间:至少5GB可用空间
 - 网络:基础部署不需要互联网连接(离线模型)
 
部署方式选择
Cleo提供两种主要部署方式:
1. Docker部署(推荐)
Docker方式适合大多数用户,提供隔离的环境和简化的依赖管理。
系统特定准备
macOS用户:
- 安装Docker Desktop或通过Homebrew安装:
brew install --cask docker brew install docker-compose 
Windows用户:
- 安装WSL2(Windows Subsystem for Linux 2)
wsl --install - 安装Docker Desktop并启用WSL2后端
 
Linux用户:
- 通过系统包管理器安装Docker Engine和Docker Compose
 
部署步骤
- 
创建配置目录并下载docker-compose文件:
mkdir ~/.cleo && cd ~/.cleo wget [Cleo的docker-compose.yml文件地址] - 
配置环境变量:
- 必须设置:
CLEO_ADMIN_PASSWORD、CLEO_DJANGO_SECRET_KEY - 可选设置:商业AI模型的API密钥(OpenAI/Anthropic/Gemini)
 - 离线模型:配置
OPENAI_BASE_URL指向本地Ollama等服务 
 - 必须设置:
 - 
启动服务:
docker-compose up 
2. Pip直接安装
适合需要深度定制或资源受限的环境。
安装命令
根据不同系统和硬件配置,安装命令有所区别:
macOS(M1/M2芯片):
CMAKE_ARGS="-DGGML_METAL=on" python -m pip install 'cleo[local]'
Windows(CUDA GPU):
$env:CMAKE_ARGS = "-DGGML_CUDA=on"
py -m pip install 'cleo[local]'
Linux(AMD GPU):
CMAKE_ARGS="-DGGML_HIPBLAS=on" FORCE_CMAKE=1 python -m pip install 'cleo[local]'
首次运行
启动服务:
USE_EMBEDDED_DB="true" cleo --anonymous-mode
首次运行会引导您:
- 创建管理员账户
 - 配置聊天模型
 - 完成基础设置
 
模型配置指南
Cleo支持多种AI模型,包括商业API和本地离线模型。
商业API模型配置
- 
OpenAI:
- 需要API密钥
 - 支持自定义API端点(兼容Ollama等)
 - 示例模型:gpt-4o
 
 - 
Anthropic Claude:
- 需要API密钥
 - 示例模型:claude-3-5-sonnet
 
 - 
Google Gemini:
- 需要API密钥
 - 示例模型:gemini-2.0-flash
 
 
离线模型配置
- 从模型仓库选择GGUF格式的模型
 - 在管理界面添加模型信息
 - 首次使用时自动下载模型文件
 - 支持GPU加速(需相应硬件)
 
客户端连接
部署完成后,可以通过以下方式访问:
- Web界面:http://localhost:42110
 - 桌面客户端:提供更好的系统集成
 - Obsidian/Emacs插件:与常用工具深度集成
 
常见问题解决
- 
管理员面板访问问题:
- 确保使用localhost而非127.0.0.1
 - 检查CSRF和域名设置
 
 - 
模型加载缓慢:
- 首次使用离线模型需要下载,请耐心等待
 - 确保硬件满足模型要求
 
 - 
GPU加速不工作:
- 检查驱动安装
 - 验证部署时的GPU参数设置
 
 
进阶配置建议
- 自动启动:配置系统服务实现开机自启
 - 远程访问:通过反向代理安全暴露服务
 - 知识同步:连接Notion或本地文档库
 - 多模型管理:配置默认模型和专用模型
 
结语
通过本文的指导,您应该已经成功在本地环境部署了Cleo AI助手系统。自托管方式为您提供了完全控制权和数据隐私保障,同时也带来了灵活的定制可能性。根据您的具体需求,可以进一步探索Cleo的高级功能和集成选项,打造专属的AI助手体验。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445