GitHub项目中的软件供应链安全:Artifact Attestations技术解析
在当今快速发展的软件开发领域,确保软件供应链的安全性已成为重中之重。GitHub作为全球最大的代码托管平台,近期推出了一项名为"Artifact Attestations"的重要功能,旨在为开发者提供更强大的软件供应链安全保障。
软件供应链安全背景
软件供应链安全涉及从代码编写到最终部署的整个生命周期。随着开源软件的普及和依赖关系的复杂化,确保每个环节的完整性和可信性变得尤为关键。SLSA框架(Supply-chain Levels for Software Artifacts)为此提供了一个渐进式的安全标准体系,而Sigstore项目则提供了实现这些标准的具体工具。
Artifact Attestations的核心价值
Artifact Attestations功能完美结合了SLSA框架和Sigstore项目的优势,同时解决了信息隐私问题。传统上,使用Sigstore进行签名验证需要将构建信息(如仓库、提交和工作流详情)发布到公共日志中,这可能不符合某些组织的隐私要求。GitHub的解决方案允许用户在保持这些信息私密的同时,仍能享受完整的供应链安全保障。
技术实现机制
该功能通过以下三个核心环节实现:
-
生成与签名:用户可以使用GitHub提供的一线Actions来自动生成构建来源证明(build provenance attestations),并对任何软件制品进行签名。这些证明详细记录了制品的构建环境、源代码位置等关键信息。
-
安全存储:生成的证明将被安全地存储在GitHub的专用证明存储中,避免了将敏感信息暴露在公共日志中的风险。
-
验证环节:用户可以通过GitHub命令行工具(CLI)下载和验证这些证明,确保软件制品的完整性和来源可信。
实际应用场景
这项技术特别适合以下场景:
- 企业级软件开发,需要严格管控供应链安全
- 对构建环境信息有保密要求的项目
- 需要符合SLSA Build Level 2及以上标准的组织
- 希望简化安全验证流程的开发团队
技术优势分析
相比传统方案,GitHub的Artifact Attestations具有以下优势:
- 隐私保护:关键构建信息不会公开到透明日志
- 易用性:与GitHub生态系统深度集成,无需额外基础设施
- 标准化:符合SLSA框架要求,便于安全审计
- 灵活性:适用于各种类型的软件制品
未来展望
随着软件供应链攻击事件的增加,类似Artifact Attestations这样的安全功能将成为开发流程中的标配。GitHub通过将安全实践直接集成到开发者工作流中,大大降低了采用门槛,有望推动整个行业安全标准的提升。
对于开发者而言,理解并合理运用这些安全功能,不仅能提升自身项目的安全性,也是应对日益严格的软件合规要求的重要准备。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









