Turing.jl中SimplexBijector与filldist结合使用的修复方案
问题背景
在Turing.jl概率编程框架中,当用户尝试使用filldist函数创建多维Dirichlet分布的数组时,会遇到栈溢出错误。具体表现为:
@model demo() = x ~ filldist(Dirichlet(ones(2)), 3)
sample(demo(), NUTS(), 1000)
执行上述代码会导致无限递归,最终抛出StackOverflowError。这个问题源于两个技术层面的缺陷:
SimplexBijector的logabsdetjac方法存在歧义- 逆向变换的形状处理不正确
技术分析
SimplexBijector的作用
在概率编程中,SimplexBijector是一个关键的变换器,用于处理单纯形空间(simplex)上的分布。Dirichlet分布定义在单纯形上,这意味着它的样本点必须满足所有分量之和为1。为了在无约束空间中进行采样和优化,我们需要将单纯形上的点映射到无约束空间,反之亦然。
问题根源
第一个问题出现在logabsdetjac方法的实现上。当处理矩阵输入时,现有的实现会导致无限递归,因为它没有正确处理矩阵的列迭代。
第二个问题涉及形状处理。当进行逆向变换时,系统没有正确重塑输入数据的维度,导致后续计算无法正确处理多维Dirichlet分布的情况。
解决方案
方法歧义修复
我们通过明确定义矩阵输入的logabsdetjac方法来避免递归问题:
function Bijectors.logabsdetjac(b::Bijectors.SimplexBijector, x::AbstractMatrix{<:Real})
return sum(Base.Fix1(logabsdetjac, b), eachcol(x))
end
这个实现明确了对矩阵的每一列分别计算对数绝对雅可比行列式,然后求和,避免了方法调用的歧义。
形状处理修复
对于逆向变换的形状问题,我们添加了专门的形状处理逻辑:
function DynamicPPL.with_logabsdet_jacobian_and_reconstruct(
f::Bijectors.Inverse{<:Bijectors.SimplexBijector},
dist,
y
)
(d, ns...) = size(dist)
yreshaped = reshape(y, d - 1, ns...)
x, logjac = with_logabsdet_jacobian(f, yreshaped)
return x, logjac
end
这段代码首先提取分布的维度信息,然后重塑输入数据,确保变换在正确的形状上进行。
技术意义
这个修复使得Turing.jl能够正确处理多维Dirichlet分布的数组,这在许多统计模型中是非常有用的功能。例如,在主题建模或多分类问题中,我们经常需要处理多个Dirichlet分布的情况。
修复后的实现不仅解决了栈溢出问题,还保持了数值计算的稳定性和效率。通过正确处理矩阵输入和形状变换,用户可以更自由地构建复杂的概率模型,而不必担心底层实现的限制。
结论
这个问题的解决展示了Turing.jl生态系统中各个组件之间的紧密协作。通过深入理解Bijector的工作原理和形状处理的需求,我们能够提供更健壮的概率编程体验。对于用户来说,这意味着可以更自然地表达统计模型,而框架会正确处理底层的技术细节。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00