首页
/ 🚗 自动驾驶的轨迹规划专家:五次多项式求解器

🚗 自动驾驶的轨迹规划专家:五次多项式求解器

2024-06-14 09:07:56作者:袁立春Spencer

在自动驾驶汽车领域,每个细节都至关重要,从车辆如何加速和减速到它在道路上如何变道或跟随前车。我们今天的主角—Robotics-Path-Planning-04-Quintic-Polynomial-Solver,正是这一领域的精妙解决方案之一。

项目介绍

由陈博涵开发并贡献给Udacity自动驾驶工程师纳米学位项目的五次多项式求解器,旨在解决一个核心问题:找到一条能够最小化加速度变化率(即“抖动”)的路径,从而实现更平稳、高效的行驶体验。这不仅是理论上的优雅数学求解,也是实际应用中提升驾驶舒适度与安全性的关键。

技术解析

该算法的核心是通过计算和优化五次多项式的系数来生成平滑的行驶轨迹。输入包括起始位置的状态(如位移、速度和加速度),目标状态以及完成转换所需的时间。输出则是一组精确的多项式系数,用以指导车辆平顺地达到预定状态。利用矩阵运算,特别是在Eigen库的帮助下,算法快速而准确地解决了复杂的方程系统,确保了高精度的轨迹规划。

应用场景

高速公路驾驶

对于高速公路场景中的车道变换、跟车等行为,该项目提供了高效且平滑的路线规划,减少了不必要的刹车和加速,提升了行驶效率和安全性。

城市街道环境

在复杂的市区环境中,五次多项式求解器能够在避免障碍物的同时,为自动驾驶车辆提供流畅的行驶方案,即使是在低速状态下也能考虑到车辆的动力学特性,确保行车的安全性。

实时应急避障

项目不仅能预先规划最优路径,还能实时响应突发状况,进行紧急避障操作,兼顾了长期目标与即时反应。

特点亮点

  1. 简洁高效

    • 算法设计巧妙,充分利用线性代数方法,使得求解过程既快捷又准确。
  2. 全面兼容

    • 不论是高速还是低速环境下,都能有效应对各种道路条件下的路径规划需求。
  3. 综合考量

    • 在保证路径平滑的基础上,还考虑到了时间成本,实现了时间和舒适度的最佳平衡。
  4. 适应性强

    • 可以灵活应用于不同的驾驶任务,如跟随、合并、停止以及维持速度控制,大大增强了系统的适用性和灵活性。

此项目不仅展示了数学和工程学的美妙结合,更是自动驾驶技术进步的一大步。无论是学术研究还是工业实践,五次多项式求解器都将发挥其独特的优势,推动自动驾驶向更加成熟可靠的未来迈进。


Robotics-Path-Planning-04-Quintic-Polynomial-Solver 是一次数学美学与工程实用性完美融合的创新尝试,它的出现,无疑将为自动驾驶领域的研究者和开发者带来新的灵感和工具,助力构建更智能、更安全的未来出行方式。如果您对自动驾驶技术感兴趣,或者正致力于相关领域的研发工作,那么,这个项目绝对值得您深入了解和运用!


🚀 想要了解更多关于五次多项式求解器的信息吗?立即加入我们,探索自动驾驶世界的无限可能!


最后更新于 2023 年 8 月 2 日


相关链接:

以上就是我们的分享,希望你能喜欢,期待你的关注和支持!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
0