MNN框架多Session场景下线程池性能优化实践
2025-05-22 11:06:15作者:宣聪麟
背景介绍
MNN作为阿里巴巴开源的高性能轻量级神经网络推理框架,在实际应用中经常需要处理多算法并发执行的场景。本文针对MNN框架在多Session(多算法)并发计算时的线程池性能问题进行了深入分析,并提出了优化方案。
问题发现
在鲲鹏920处理器环境下,使用yolov8n.mnn模型进行测试时发现:
- 当使用MNN内部线程池时,6个算法句柄的吞吐量仅为51,平均耗时176ms
- 相同条件下,使用openMP线程池的吞吐量可达90,平均耗时65ms,性能提升约80%
- 使用多个子线程池方案时,7个句柄的吞吐量为73,平均耗时95ms,相比内部线程池提升约40%
性能瓶颈分析
通过对MNN内部线程池的分析,发现存在以下性能瓶颈:
- 任务分配不均:并发任务总是优先分配给低序号线程,导致高序号线程闲置
- 线程唤醒策略低效:计算并发任务时所有线程都被唤醒,使用自旋锁导致多余线程空转
- 计算时间随句柄数增加:从1个句柄时的0.1ms增加到15个句柄时的0.6ms
优化方案探索
针对上述问题,尝试了以下优化方案:
方案一:无锁队列优化
- 采用多个子线程池,每个线程池4个并发线程
- 任务队列使用无锁阻塞队列(concurrentqueue)
- 每个算法句柄绑定特定线程池
测试结果显示:
- 6个句柄时吞吐量65.7,平均耗时90.79ms
- 相比原内部线程池有明显提升,但仍不及openMP性能
方案二:单线程池+无锁队列
- 使用单个线程池
- 任务队列采用无锁阻塞队列
测试结果显示:
- 性能提升有限,6个句柄时吞吐量52.93,平均耗时113.2ms
- 说明单纯的无锁队列优化效果不明显
技术建议
根据测试结果和MNN官方建议:
- 少量实例(小于2)时可以使用内部线程池加速
- 多实例场景建议:
- 全部使用单线程模式
- 外部自行管理线程池
- 或直接使用openMP线程池
性能优化启示
- 线程池设计需要考虑任务分配的均衡性
- 线程唤醒策略对性能影响显著
- 在多Session场景下,线程池的竞争会成为性能瓶颈
- 无锁数据结构可以改善但无法完全解决问题
总结
MNN框架在多Session场景下的线程池性能优化是一个系统工程,需要根据具体应用场景选择合适的线程管理策略。对于高性能要求的应用,建议采用外部线程池管理或直接使用openMP等成熟方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895