PHPUnit测试桩(Stub)中method()与expects()的正确使用方式
2025-05-10 09:23:02作者:温玫谨Lighthearted
在PHPUnit测试框架中,创建和使用测试桩(Test Stub)是单元测试的重要组成部分。然而,许多开发者在使用过程中会遇到关于method()和expects()方法的一些困惑,特别是在方法链式调用时出现的类型问题。
核心问题分析
PHPUnit提供了两种方式来配置测试桩的行为:
- 直接使用
method()方法:
$mock = $this->createMock(Test::class);
$mock->method('foo')->with(1)->willReturn(2);
- 使用
expects()方法:
$mock = $this->createMock(Test::class);
$mock->expects($this->once())
->method('foo')
->with(1)
->willReturn(2);
这两种方式看似相似,但实际上有着重要的区别。
底层机制解析
在PHPUnit的实现中,method()方法实际上是expects(new AnyInvokedCount)的快捷方式。这意味着:
- 当使用
method()时,PHPUnit内部会默认添加一个"任意调用次数"的期望 - 而使用
expects()则允许开发者显式地指定调用次数的期望
从类型系统的角度看:
method()返回的是InvocationMocker接口expects()也返回InvocationMocker接口- 但直接使用
method()时,静态分析工具可能会误认为返回的是InvocationStubber接口
最佳实践建议
-
明确测试意图:
- 如果只关心方法的返回值,不关心调用次数,可以使用
method() - 如果需要验证方法是否被调用及调用次数,应该使用
expects()
- 如果只关心方法的返回值,不关心调用次数,可以使用
-
静态分析兼容性:
- 当使用PHPStan等静态分析工具时,建议统一使用
expects()方式 - 这样可以避免因接口类型推断导致的误报
- 当使用PHPStan等静态分析工具时,建议统一使用
-
代码可读性:
- 使用
expects()方式更明确地表达了测试的验证点 - 使测试代码的意图更加清晰
- 使用
实际应用示例
// 仅配置返回值,不验证调用
$mock = $this->createMock(Service::class);
$mock->method('process')->willReturn(true);
// 验证方法调用及参数
$mock = $this->createMock(Service::class);
$mock->expects($this->exactly(2))
->method('process')
->withConsecutive(
[$this->equalTo('input1')],
[$this->equalTo('input2')]
);
理解PHPUnit测试桩中这两种配置方式的区别和联系,有助于编写更清晰、更可靠的单元测试。在大多数情况下,特别是当测试需要验证交互行为时,使用expects()方式是更优的选择。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328