PHPUnit测试桩(Stub)中method()与expects()的正确使用方式
2025-05-10 06:32:14作者:温玫谨Lighthearted
在PHPUnit测试框架中,创建和使用测试桩(Test Stub)是单元测试的重要组成部分。然而,许多开发者在使用过程中会遇到关于method()和expects()方法的一些困惑,特别是在方法链式调用时出现的类型问题。
核心问题分析
PHPUnit提供了两种方式来配置测试桩的行为:
- 直接使用
method()方法:
$mock = $this->createMock(Test::class);
$mock->method('foo')->with(1)->willReturn(2);
- 使用
expects()方法:
$mock = $this->createMock(Test::class);
$mock->expects($this->once())
->method('foo')
->with(1)
->willReturn(2);
这两种方式看似相似,但实际上有着重要的区别。
底层机制解析
在PHPUnit的实现中,method()方法实际上是expects(new AnyInvokedCount)的快捷方式。这意味着:
- 当使用
method()时,PHPUnit内部会默认添加一个"任意调用次数"的期望 - 而使用
expects()则允许开发者显式地指定调用次数的期望
从类型系统的角度看:
method()返回的是InvocationMocker接口expects()也返回InvocationMocker接口- 但直接使用
method()时,静态分析工具可能会误认为返回的是InvocationStubber接口
最佳实践建议
-
明确测试意图:
- 如果只关心方法的返回值,不关心调用次数,可以使用
method() - 如果需要验证方法是否被调用及调用次数,应该使用
expects()
- 如果只关心方法的返回值,不关心调用次数,可以使用
-
静态分析兼容性:
- 当使用PHPStan等静态分析工具时,建议统一使用
expects()方式 - 这样可以避免因接口类型推断导致的误报
- 当使用PHPStan等静态分析工具时,建议统一使用
-
代码可读性:
- 使用
expects()方式更明确地表达了测试的验证点 - 使测试代码的意图更加清晰
- 使用
实际应用示例
// 仅配置返回值,不验证调用
$mock = $this->createMock(Service::class);
$mock->method('process')->willReturn(true);
// 验证方法调用及参数
$mock = $this->createMock(Service::class);
$mock->expects($this->exactly(2))
->method('process')
->withConsecutive(
[$this->equalTo('input1')],
[$this->equalTo('input2')]
);
理解PHPUnit测试桩中这两种配置方式的区别和联系,有助于编写更清晰、更可靠的单元测试。在大多数情况下,特别是当测试需要验证交互行为时,使用expects()方式是更优的选择。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319