AlphaGenome模型输出元数据深度解析
前言
AlphaGenome作为基因组预测模型,能够输出多种类型的基因组学数据预测结果。本文将深入解析AlphaGenome的11种输出类型及其相关元数据,帮助研究人员更好地理解和使用这些预测结果。
模型输出类型概览
AlphaGenome提供了11种不同类型的基因组学预测输出,涵盖了转录组、表观遗传学、染色质结构等多个维度。每种输出类型都有其特定的生物学意义和技术特征。
主要输出类型分类
-
转录组相关输出
- RNA_SEQ:RNA测序表达量
- CAGE:转录起始位点表达量
- PROCAP:精确运行测序捕获的转录起始位点表达量
-
染色质可及性输出
- DNASE:DNase I超敏感位点测序
- ATAC:转座酶可及染色质测序
-
蛋白质-DNA互作输出
- CHIP_HISTONE:组蛋白修饰ChIP-seq
- CHIP_TF:转录因子ChIP-seq
-
RNA剪接相关输出
- SPLICE_SITES:剪接位点预测
- SPLICE_JUNCTIONS:剪接连接点预测
- SPLICE_SITE_USAGE:剪接位点使用率
-
三维基因组结构输出
- CONTACT_MAPS:染色质接触图谱
输出类型详细解析
1. RNA测序表达量(RNA_SEQ)
RNA_SEQ输出提供了基于RNA测序数据的基因表达预测,包含PolyA+ RNA和Total RNA两种测序方法的结果。部分数据还包含链特异性信息。
技术参数:
- 单位:标准化读段信号
- 分辨率:1bp
- 生物样本数:285
- 总轨道数:667
2. 染色质可及性数据(DNASE/ATAC)
DNASE和ATAC分别使用不同的技术测量染色质可及性:
DNASE:
- 基于DNase I超敏感位点测序
- 生物样本数:305
- 轨道数:305
ATAC:
- 基于转座酶可及染色质测序
- 生物样本数:167
- 轨道数:167
两者都提供1bp分辨率的标准化插入信号。
3. 组蛋白修饰与转录因子数据(CHIP)
CHIP数据分为两类:
CHIP_HISTONE:
- 包含24种不同组蛋白修饰标记
- 分辨率:128bp
- 使用fold-change over control作为单位
CHIP_TF:
- 包含43种不同转录因子
- 同样使用128bp分辨率
4. 剪接相关数据
AlphaGenome提供了三种剪接相关预测:
SPLICE_SITES:
- 预测剪接位点(供体和受体)的概率
- 分辨率:1bp
- 输出为概率值(0-1)
SPLICE_JUNCTIONS:
- 预测RNA测序中的剪接连接点读段计数
- 分辨率:1bp
SPLICE_SITE_USAGE:
- 预测特定剪接位点的使用比例
- 单位:分数(0-1)
5. 染色质接触图谱(CONTACT_MAPS)
CONTACT_MAPS提供了基因组位点间的物理接触频率预测:
- 基于Micro-C和Hi-C数据
- 分辨率:2048bp
- 单位:相对于基因组距离预期的对数倍数
元数据访问与使用
AlphaGenome提供了详细的元数据信息,可以通过Python API访问:
output_metadata = dna_model.output_metadata(
organism=dna_client.Organism.HOMO_SAPIENS
)
元数据以DataFrame格式存储,包含以下关键信息:
name
:轨道名称strand
:链信息(+/-, 或.)ontology_curie
:生物样本的本体论IDbiosample_name
:生物样本描述
特殊注意事项
-
对于SPLICE_JUNCTION输出,链信息是连接点的属性而非轨道的属性,因此元数据显示的行数会比表中报告的数量少一半。
-
部分输出类型包含额外列,如RNA_SEQ和SPLICE_SITES包含
gtex_tissue
列,标识GTEx项目中的组织来源。 -
对于"Brain - Cerebellar hemisphere"组织,使用了UBERON:0002245而非GTEx文档中的UBERON:0002037,以更准确地反映小脑半球的本体论ID。
最佳实践建议
-
选择适当的输出类型:根据研究问题选择最相关的输出类型,如研究基因表达选择RNA_SEQ,研究染色质结构选择CONTACT_MAPS。
-
注意分辨率差异:不同输出类型的分辨率从1bp到2048bp不等,这会影响分析的精细程度。
-
利用元数据进行筛选:通过元数据中的生物样本信息可以筛选特定组织或细胞类型的预测结果。
-
理解数据标准化:不同输出类型使用不同的标准化方法(如fold-change、概率值等),理解这些单位对正确解释结果至关重要。
结语
AlphaGenome的多样化输出为基因组学研究提供了丰富的预测资源。通过深入理解这些输出类型的特性和元数据结构,研究人员可以更有效地利用这些预测结果,推动基因组学研究的进展。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









