OpenEXR:专业级图像存储格式的首选
2024-09-17 18:44:45作者:滑思眉Philip
项目介绍
OpenEXR 是一个开源项目,提供了 EXR 文件格式的规范和参考实现。EXR 文件格式是电影和电视行业中广泛使用的专业级图像存储格式,旨在准确且高效地表示高动态范围(HDR)场景线性图像数据及其相关元数据。OpenEXR 支持多部分、多通道的使用场景,广泛应用于需要高精度的软件中,如照片级真实感渲染、纹理访问、图像合成、深度合成和数字中间片(DI)处理。
项目技术分析
OpenEXR 的核心技术优势在于其对高动态范围图像的支持,以及对多通道、多部分图像数据的强大处理能力。项目采用 C++ 编写,提供了丰富的 API,方便开发者进行图像的读写、压缩和解压缩操作。此外,OpenEXR 还支持跨平台运行,包括 Linux、Windows 和 macOS 等操作系统。
项目及技术应用场景
OpenEXR 适用于以下场景:
- 电影和电视制作:用于存储和处理高动态范围的图像数据,确保视觉效果的准确性和一致性。
- 游戏开发:用于纹理和光照贴图的存储,提升游戏画面的真实感和细节表现。
- 科学可视化:用于存储和展示高精度的科学数据,如医学成像和气象数据。
- 摄影后期处理:用于高动态范围图像的合成和编辑,提升照片的视觉效果。
项目特点
- 高动态范围支持:OpenEXR 能够准确表示高动态范围图像,适用于需要高精度的图像处理任务。
- 多通道支持:支持多通道图像数据的存储和处理,适用于复杂的图像合成和编辑任务。
- 跨平台兼容:支持 Linux、Windows 和 macOS 等多种操作系统,方便开发者进行跨平台开发。
- 安全性与可靠性:项目注重安全性和可靠性,确保数据的长久保存和处理过程的稳定性。
- 易于使用:提供了简洁易用的 API,方便开发者快速上手并集成到自己的项目中。
快速开始
想要快速体验 OpenEXR 的功能,可以参考以下简单的“Hello, world”示例代码:
#include <ImfRgbaFile.h>
#include <ImfArray.h>
#include <iostream>
int main()
{
try {
int width = 10;
int height = 10;
Imf::Array2D<Imf::Rgba> pixels(width, height);
for (int y=0; y<height; y++)
for (int x=0; x<width; x++)
pixels[y][x] = Imf::Rgba(0, x / (width-1.0f), y / (height-1.0f));
Imf::RgbaOutputFile file("hello.exr", width, height, Imf::WRITE_RGBA);
file.setFrameBuffer(&pixels[0][0], 1, width);
file.writePixels(height);
} catch (const std::exception &e) {
std::cerr << "Unable to read image file hello.exr:" << e.what() << std::endl;
return 1;
}
return 0;
}
通过 CMake 构建项目:
$ cmake -S . -B _build -DCMAKE_PREFIX_PATH=<path to OpenEXR libraries/includes>
$ cmake --build _build
更多详细信息,请参考 OpenEXR 技术文档。
社区与支持
-
提问与交流:
- 邮件列表:openexr-dev@lists.aswf.io
- Slack 频道:academysoftwarefdn#openexr
-
会议与活动:
- 技术指导委员会会议:每两周一次,周四下午1:30(太平洋时间)
- 会议日历:https://lists.aswf.io/g/openexr-dev/calendar
- 会议笔记:https://wiki.aswf.io/display/OEXR/TSC+Meetings
-
报告问题:
- 提交 Issue:https://github.com/AcademySoftwareFoundation/openexr/issues
-
安全漏洞报告:
- 发送邮件至:security@openexr.com
-
贡献代码:
资源
- 官方网站:http://www.openexr.com
- 技术文档:https://openexr.readthedocs.io
- 版本迁移指南:OpenEXR/Imath Version 2.x to 3.x Porting Guide
- 参考图像:https://github.com/AcademySoftwareFoundation/openexr-images
- 安全策略:SECURITY.md
- 发布说明:CHANGES.md
- 贡献者列表:CONTRIBUTORS.md
许可证
OpenEXR 采用 BSD-3-Clause 许可证。

登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137