Daft项目优化:迁移Parquet集成测试数据至S3存储
2025-06-28 04:19:44作者:何将鹤
在开源数据分析框架Daft的开发过程中,团队发现了一个影响测试稳定性的问题:集成测试依赖的Parquet测试数据存储在GitHub的rawcontent服务上,而频繁的测试请求会导致服务被限流。本文将深入分析这一问题背景、技术解决方案以及迁移到S3存储的优势。
问题背景
Daft框架在进行Parquet文件格式的集成测试时,需要访问特定的测试数据集。原本这些数据文件托管在GitHub的rawcontent服务上,开发团队通过HTTPS协议直接获取。但在持续集成(CI)环境中,频繁的测试请求会导致GitHub对请求进行限流(throttling),表现为HTTP 429 Too Many Requests错误。
这种限流机制严重影响了开发流程:
- 导致自动化测试失败
- 延长了CI/CD管道的执行时间
- 增加了开发人员排查非代码问题的负担
技术解决方案
Daft团队决定将测试数据迁移到Amazon S3存储服务,具体方案包括:
- 在daft-public S3桶中创建专用目录存放Parquet测试文件
- 修改测试代码,将数据获取路径从GitHub切换到S3
- 确保S3桶的访问权限设置为公开读取
- 保留原始数据的完整性和校验机制
迁移后的数据访问URL格式示例:
s3://daft-public/parquet-test-data/plain-dict-uncompressed-checksum.parquet
S3存储的优势
相比GitHub rawcontent,使用S3存储测试数据具有多方面优势:
- 更高的可靠性:S3设计为99.99%的可用性,远高于GitHub rawcontent的服务级别
- 更好的性能:S3专为大规模对象存储优化,提供更高的吞吐量和更低的延迟
- 弹性扩展:S3自动处理流量激增,不会因为频繁请求而限流
- 成本效益:对于公开读取的小型测试数据集,S3的成本几乎可以忽略不计
- 访问控制:可以通过IAM策略精细控制访问权限,未来如需限制访问也很方便
实施细节
在技术实现上,Daft团队需要:
- 使用AWS CLI或SDK将原始Parquet文件上传至S3
- 更新测试用例中的URL引用
- 添加适当的错误处理和重试逻辑
- 考虑本地开发环境与CI环境的统一访问方式
- 在文档中更新测试数据的位置说明
对于Python测试代码的修改,主要涉及将类似:
url = "https://raw.githubusercontent.com/apache/parquet-testing/master/data/plain-dict-uncompressed-checksum.parquet"
改为:
url = "s3://daft-public/parquet-test-data/plain-dict-uncompressed-checksum.parquet"
后续优化方向
这一改进为Daft项目打开了更多优化可能性:
- 测试数据版本管理:可以在S3中实现测试数据的版本控制
- 性能基准测试:稳定的数据源使得性能测试结果更加可靠
- 扩展测试数据集:不受GitHub限制,可以添加更大规模的测试数据
- 多区域部署:根据需要可以将测试数据复制到不同区域的S3桶
总结
Daft项目通过将Parquet集成测试数据从GitHub迁移到S3存储,显著提高了测试的稳定性和可靠性。这一改进不仅解决了当前的限流问题,还为项目的持续集成流程奠定了更坚实的基础。这种架构决策体现了开源项目在基础设施选择上的务实态度,平衡了可靠性、成本和维护复杂度等多方面因素。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
666
153
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
300
Ascend Extension for PyTorch
Python
216
235
React Native鸿蒙化仓库
JavaScript
255
320
仓颉编译器源码及 cjdb 调试工具。
C++
133
866
仓颉编程语言运行时与标准库。
Cangjie
141
876
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
650
仓颉编程语言开发者文档。
59
819