Daft项目优化:迁移Parquet集成测试数据至S3存储
2025-06-28 16:01:02作者:何将鹤
在开源数据分析框架Daft的开发过程中,团队发现了一个影响测试稳定性的问题:集成测试依赖的Parquet测试数据存储在GitHub的rawcontent服务上,而频繁的测试请求会导致服务被限流。本文将深入分析这一问题背景、技术解决方案以及迁移到S3存储的优势。
问题背景
Daft框架在进行Parquet文件格式的集成测试时,需要访问特定的测试数据集。原本这些数据文件托管在GitHub的rawcontent服务上,开发团队通过HTTPS协议直接获取。但在持续集成(CI)环境中,频繁的测试请求会导致GitHub对请求进行限流(throttling),表现为HTTP 429 Too Many Requests错误。
这种限流机制严重影响了开发流程:
- 导致自动化测试失败
- 延长了CI/CD管道的执行时间
- 增加了开发人员排查非代码问题的负担
技术解决方案
Daft团队决定将测试数据迁移到Amazon S3存储服务,具体方案包括:
- 在daft-public S3桶中创建专用目录存放Parquet测试文件
- 修改测试代码,将数据获取路径从GitHub切换到S3
- 确保S3桶的访问权限设置为公开读取
- 保留原始数据的完整性和校验机制
迁移后的数据访问URL格式示例:
s3://daft-public/parquet-test-data/plain-dict-uncompressed-checksum.parquet
S3存储的优势
相比GitHub rawcontent,使用S3存储测试数据具有多方面优势:
- 更高的可靠性:S3设计为99.99%的可用性,远高于GitHub rawcontent的服务级别
- 更好的性能:S3专为大规模对象存储优化,提供更高的吞吐量和更低的延迟
- 弹性扩展:S3自动处理流量激增,不会因为频繁请求而限流
- 成本效益:对于公开读取的小型测试数据集,S3的成本几乎可以忽略不计
- 访问控制:可以通过IAM策略精细控制访问权限,未来如需限制访问也很方便
实施细节
在技术实现上,Daft团队需要:
- 使用AWS CLI或SDK将原始Parquet文件上传至S3
- 更新测试用例中的URL引用
- 添加适当的错误处理和重试逻辑
- 考虑本地开发环境与CI环境的统一访问方式
- 在文档中更新测试数据的位置说明
对于Python测试代码的修改,主要涉及将类似:
url = "https://raw.githubusercontent.com/apache/parquet-testing/master/data/plain-dict-uncompressed-checksum.parquet"
改为:
url = "s3://daft-public/parquet-test-data/plain-dict-uncompressed-checksum.parquet"
后续优化方向
这一改进为Daft项目打开了更多优化可能性:
- 测试数据版本管理:可以在S3中实现测试数据的版本控制
- 性能基准测试:稳定的数据源使得性能测试结果更加可靠
- 扩展测试数据集:不受GitHub限制,可以添加更大规模的测试数据
- 多区域部署:根据需要可以将测试数据复制到不同区域的S3桶
总结
Daft项目通过将Parquet集成测试数据从GitHub迁移到S3存储,显著提高了测试的稳定性和可靠性。这一改进不仅解决了当前的限流问题,还为项目的持续集成流程奠定了更坚实的基础。这种架构决策体现了开源项目在基础设施选择上的务实态度,平衡了可靠性、成本和维护复杂度等多方面因素。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355