Daft项目优化:迁移Parquet集成测试数据至S3存储
2025-06-28 18:34:56作者:何将鹤
在开源数据分析框架Daft的开发过程中,团队发现了一个影响测试稳定性的问题:集成测试依赖的Parquet测试数据存储在GitHub的rawcontent服务上,而频繁的测试请求会导致服务被限流。本文将深入分析这一问题背景、技术解决方案以及迁移到S3存储的优势。
问题背景
Daft框架在进行Parquet文件格式的集成测试时,需要访问特定的测试数据集。原本这些数据文件托管在GitHub的rawcontent服务上,开发团队通过HTTPS协议直接获取。但在持续集成(CI)环境中,频繁的测试请求会导致GitHub对请求进行限流(throttling),表现为HTTP 429 Too Many Requests错误。
这种限流机制严重影响了开发流程:
- 导致自动化测试失败
- 延长了CI/CD管道的执行时间
- 增加了开发人员排查非代码问题的负担
技术解决方案
Daft团队决定将测试数据迁移到Amazon S3存储服务,具体方案包括:
- 在daft-public S3桶中创建专用目录存放Parquet测试文件
- 修改测试代码,将数据获取路径从GitHub切换到S3
- 确保S3桶的访问权限设置为公开读取
- 保留原始数据的完整性和校验机制
迁移后的数据访问URL格式示例:
s3://daft-public/parquet-test-data/plain-dict-uncompressed-checksum.parquet
S3存储的优势
相比GitHub rawcontent,使用S3存储测试数据具有多方面优势:
- 更高的可靠性:S3设计为99.99%的可用性,远高于GitHub rawcontent的服务级别
- 更好的性能:S3专为大规模对象存储优化,提供更高的吞吐量和更低的延迟
- 弹性扩展:S3自动处理流量激增,不会因为频繁请求而限流
- 成本效益:对于公开读取的小型测试数据集,S3的成本几乎可以忽略不计
- 访问控制:可以通过IAM策略精细控制访问权限,未来如需限制访问也很方便
实施细节
在技术实现上,Daft团队需要:
- 使用AWS CLI或SDK将原始Parquet文件上传至S3
- 更新测试用例中的URL引用
- 添加适当的错误处理和重试逻辑
- 考虑本地开发环境与CI环境的统一访问方式
- 在文档中更新测试数据的位置说明
对于Python测试代码的修改,主要涉及将类似:
url = "https://raw.githubusercontent.com/apache/parquet-testing/master/data/plain-dict-uncompressed-checksum.parquet"
改为:
url = "s3://daft-public/parquet-test-data/plain-dict-uncompressed-checksum.parquet"
后续优化方向
这一改进为Daft项目打开了更多优化可能性:
- 测试数据版本管理:可以在S3中实现测试数据的版本控制
- 性能基准测试:稳定的数据源使得性能测试结果更加可靠
- 扩展测试数据集:不受GitHub限制,可以添加更大规模的测试数据
- 多区域部署:根据需要可以将测试数据复制到不同区域的S3桶
总结
Daft项目通过将Parquet集成测试数据从GitHub迁移到S3存储,显著提高了测试的稳定性和可靠性。这一改进不仅解决了当前的限流问题,还为项目的持续集成流程奠定了更坚实的基础。这种架构决策体现了开源项目在基础设施选择上的务实态度,平衡了可靠性、成本和维护复杂度等多方面因素。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
315
2.74 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
155
178
暂无简介
Dart
606
136
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
240
85
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K
React Native鸿蒙化仓库
JavaScript
238
310