首页
/ DB-GPT-Hub项目中ChatGLM3微调时的Tokenizer填充问题解析

DB-GPT-Hub项目中ChatGLM3微调时的Tokenizer填充问题解析

2025-07-08 21:28:52作者:苗圣禹Peter

在使用DB-GPT-Hub项目进行ChatGLM3模型微调时,开发者可能会遇到一个典型的AssertionError错误。这个错误发生在数据处理阶段,具体表现为tokenizer的padding_side参数校验失败。本文将深入分析这个问题的成因、影响以及解决方案。

问题现象

当运行DB-GPT-Hub的sft_train.py脚本进行监督式微调时,程序会在预处理数据集阶段抛出AssertionError异常。错误信息明确指出tokenization_chatglm.py文件中的断言失败:assert self.padding_side == "left"。这表明tokenizer的填充方向设置与代码预期不符。

技术背景

在Transformer模型训练中,tokenizer的填充(padding)是一个关键步骤。填充方向(padding_side)决定了在序列长度不足时,是在左侧(left)还是右侧(right)添加填充标记(pad tokens)。这个设置会影响模型处理序列的方式,特别是在自回归模型中尤为重要。

ChatGLM3作为一款中文大语言模型,其原始实现可能对填充方向有特定要求。而DB-GPT-Hub作为一个通用的微调框架,可能需要适配不同模型的特殊需求。

问题根源

经过分析,这个问题源于ChatGLM3的tokenizer实现与DB-GPT-Hub框架的预期不匹配:

  1. ChatGLM3的tokenizer实现中强制要求padding_side必须为"left"
  2. 但DB-GPT-Hub框架可能在配置中默认或显式地将padding_side设置为"right"
  3. 这种不一致导致在数据预处理阶段的断言失败

解决方案

针对这个问题,开发者可以采用以下解决方案:

  1. 直接修改tokenizer代码:将tokenization_chatglm.py文件中的assert语句修改为assert self.padding_side == "right"。这是最直接的解决方案,但可能影响模型的其他行为。

  2. 调整框架配置:在DB-GPT-Hub的配置中显式设置padding_side="left",使其符合ChatGLM3的要求。

  3. 创建适配层:在数据预处理阶段添加适配代码,动态调整tokenizer的padding_side设置。

对于大多数开发者而言,第一种方案最为简单直接,但需要注意这可能会影响模型的原始行为。建议在修改后进行全面测试,确保模型的其他功能不受影响。

最佳实践建议

为了避免类似问题,建议开发者在进行大模型微调时:

  1. 仔细阅读模型和框架的文档,了解各组件的要求和假设
  2. 在集成不同组件时,注意检查关键参数的兼容性
  3. 建立完善的测试流程,尽早发现参数不匹配问题
  4. 考虑使用配置管理工具统一管理所有组件的参数设置

通过理解这个问题的本质和解决方案,开发者可以更顺利地使用DB-GPT-Hub框架进行ChatGLM3等大语言模型的微调工作,同时也能更好地处理类似的技术兼容性问题。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
23
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
flutter_flutterflutter_flutter
暂无简介
Dart
526
116
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
212
287